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In this review we present a simple method of introducing stochastic and quantum
metrics into gravitational theory at short distances in terms of small fluctuations
around a classical background space-time. We consider only residual effects due
to the stochastic (or quantum) theory of gravity and use a perturbative stoch-
astization (or quantization) method. By using the general covariance and corre-
spondence principles, we reconstruct the theory of gravitational, mechanical,
electromagnetic, and quantum mechanical processes and tensor algebra in
the space-time with stochastic and quantum metrics. Some consequences of the
theory are also considered, in particular, it indicates that the value of the
fundamental length ! lies in the interval 1072 < /<1072 c¢m.
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PREFACE

Recent developments of the experimental technology of high-energy
physics permitting one to probe deeper and deeper into matter up to
distances of 107'°-107"" cm (even ~107'® cm, if energies can be achieved
of up to 20TeV in the center-of-mass system, using the proposed U.S.
superconducting supercollider complex) and theoretical work devoted to
the construction of a unified field theory of elementary particle forces,
including gravitation, have resulted in a deeper understanding of the space-
time structure in the microworld. Among the proposed forms of space-time
in the microworld [for example, the concept of superspace and pregeometry,
lattice (discrete) and cellular structures of space-time, higher-dimensional
geometry, etc.], an important role is played by stochastic or quantum
space-time. This idea is based on the fact that the quantum fluctuations in
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geometry are inescapable if one believes in the quantum principle and
Einstein’s theory.

To realize these possible structures of space-time at short distances we
present a working model of stochastic and quantum fluctuations of the
space-time metric and consider their consequences. This review deals
specifically with a concrete mechanism for space-time metric fluctuations
due to background stochastic and gravitonlike quantized fields. Our con-
struction of the theory is based on the general covariance principle, which
allows us to obtain physical equations and quantities in space-time with
stochastic or quantum fluctuations in the metric. At the same time, our
scheme may be useful for taking into account the gravitational force in
particle physics phenomena, by means of stochastic and quantum fluctu-
ations in the metric.

It is generally accepted that quantum or stochastic gravitational effects
show up essentially at the so-called “Planck mass” of about 10'° GeV [the
“Planck length” is Ip = (#G/c*)"*=107** cm]. From the practical point of
view this length is so small that the contribution made by the quantum
gravitational effect to any physical quantity is in fact negligible at present
attainable energies. However, from our considerations it is clear that between
distances of 107>’ cm and 107" cm there may exist some domain in which
stochastic and quantum structures of space-time may be manifested. This
domain is characterized by the length I~1072*-10"* cm.

The purpose of this work is modest. We consider only residual effects
due to the stochastic (or quantum) theory of gravity, based on the assumption
that, at short distances, the space-time metric fluctuates (or is quantized)
and we use the perturbative stochastization (or quantization) method. It
seems that the true quantum theory of gravity is not perturbative. It is
argued that quantum general relativity may still exist because strong-coup-
ling effects at short distances contradict the assumption that quantum
geometry may be understood in terms of small fluctuations around a classical
background space-time.

This review consists of seven sections. In accordance with the general
covariance and correspondence principles, a theory of gravitational,
mechanical, electromagnetic, and quantum mechanical processes and tensor
algebra (Sections 1-7) is reconstructed by using the concept of stochastic
and quantum fluctuations in the metric.

Physicists concerned with condensed matter may be interested in the
discussion of the physical consequences of introducing stochastic and
quantum fluctuations in the metric, and of obtaining lower and upper
bounds on the value of the fundamental length. The central matters are the
general covariance principle, tensor analysis with stochastic and quantum
metrics, the T-product definition of geometric quantized objects, stochastic
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quantization with distributions, and change of the particle mass and of the
Newtonian potential due to stochastic (or quantum) fluctuations in the
space-time metric.

NOTATION

Greek (a, B, ,...) and Latin letters (i, j, k,...) run over space-time
coordinates 0, 1, 2, 3 and over spatial coordinates 1, 2,3 only.
The Minkowski metric is defined as

Nuw =0 for pu#v
=Moo = N1 = Np=1N13=1
The product of two four-vectors p and q with components
p=(po,0)=(po,Pi),  4=(4o,0)=(q0,4) (ij=1,2,3)
is defined as

P9=".0"9" = p.q9" = —pogo+ (PQ) = —Pogo+ P19, t P2g>+ P45

Summation is carried out by repeating indices, omitting the symbol of
summation. Sometimes the Euclidean metric 6" = §,,

8,, =0, MFEY
84a=2811=28,,=03;3

is used.
The equivalent notation

f(x) = f(x0,%x) = f(x0, x;)
g(P)=g(P0,P):g(POsPJ) (19]=15253)

will be used for the functions f(x) and g(p) defined in four-dimensional
space-time and momentum space, respectively. Moreover, the following
notation is clear:

I d“xf(x)=J’ dx, dx f(xy,X) = J dx f(x)

In this review we use the system of units {with some exceptions)
in which the light velocity ¢ and the Planck constant h divided by 27
(h =h/24r) are equal to unity, i.e., A=c=1.

INTRODUCTION

At present, much attention is being paid to the study of space-time
properties at short distances. This results from the fact that, first, construction
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of the unified theory of elementary particle forces including gravitation
requires a deeper understanding of space-time structure (high-dimensional,
stochastic, and quantum, etc.) at very high energies (or, equivalently, at
small distances), and second, advances in high-energy experimental tech-
nology allow us to probe a very small space-time region step by step which
is defined by a parameter ! with the dimension of length. From the experi-
mental data (Ting, 1982; Barber et al, 1979a,b, 1980; Bailey et al., 1979;
Bartel et al., 1980; Berger et al., 1980) on testing locality properties it follows
that our usual space-time concept is valid up to distances of I<10"'*cm
(Kinoshita, 1979; Lautrup et al, 1972; Namsrai and Dineykhan, 1983;
Namsrai, 1985, also see Bracci et al., 1983, 1987; Li, 1982; Dineykhan and
Namsrai, 1986b; Kirzhnits, 1967).

On the other hand, it is indisputable that phenomena in the microworld
are quantized, i.e., their properties are described by quantum probabilistic
laws, while the space-time structure connected with them becomes con-
tinuous, at least up to the above-mentioned distances. The structure of
space-time and the physical phenomena within it enter inseparably into
human cognition, and their interrelations are those of dialectical unity. This
unity gives rise to some hope that the quantum and stochastic natures of
space-time properties can exist in the microworld and be discovered ulti-
mately. Given this assumption, the following question arises: At what
distances do quantum and stochastic structures of space-time start? This
has become more pressing in the light of the development of unified ways
of describing the fundamental forces in nature. Although the force of gravity
is extremely weak with respect to electromagnetic and weak (or electroweak)
and strong forces between elementary particles, it is still nonzero, so that
as increasing energies probe deeper and deeper into matter, a level eventually
should be reached where quantum gravitational effects appear. This is the
so-called “Planck mass” of about 10" GeV (the “Planck length” Ip=
(hG/c*)?=1.62x10"3 cm). It is not to be ruled out that between the
distances 107>’ cm and 107'® cm there may exist some oasis in which the
stochastic and quantum structures of space-time may be manifested. As will
indeed be shown below, this expected oasis exists, and the value of the
fundamental length lies in the interval 107>°-1072? ¢cm, the upper limit for
which was obtained in Namsrai (1986a, 1988).

The idea of a quantum and stochastic structure of space-time has been
discussed by many authors, particularly beginning from the early stages of
the development of field theory and the work devoted to the construction
of a finite theory of quantized fields free from ultraviolet divergences.

In the theory of quantized and stochastic space-times it is usually
assumed that there is no exact conceptual meaning of definite space-time
points, i.e., the components of coordinates £ and x;, in the corresponding
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spaces do not commute,
[x},X1]#0 for u#w

and are distributed with a probability measure w(b%/I’), where x, = x, + b~
consists of two parts: a regular part x,=(x,,x) and a stochastic part
bE = (ib,,b) (for details, see Namsrai, 1986b). The theory of quantized
space-time was first discussed by Snyder (1947a,b) and Yang (1947), and
subsequently developed by Kadyshevsky (1959, 1962, 1980), Gol’fand (1959,
1962), and Tamm (1965) (also see Leznov, 1967; Kirzhnits and Chechin,
1967). For discussion of various theoretical ideas of space-time structures
in the microworld, see Blokhintsev (1973), Prugovelki (1984), and Namsrai
(1986b) (where earlier references can be found).

Among different possible space-time structures {quantum or discrete
(Wilson, 1974; Lee, 1983; Friedberg and Lee, 1983; Fradkin and Tseytlin,
1985; Yamamoto, 1985; Banai, 1984, 1985; Fujiwara, 1980), foamlike
{Wheeler, 1964, Hawking, 1978, 1983; Strominger, 1984; also see Misner
et al, 1973), code (Finkelstein, 1969, 1972, 1974), cellular (Cole, 1972;
Kirillov and Kochnev, 1987), and so on] at short distances, the stochastic
or fluctuational character of space-time may become the most probable
candidate and the natural arena of future physical theory. Indeed, if one
believes in the quantum principle and Einstein’s theory, then stochastic or
fluctuational properties of space-time should inevitably appear in the micro-
world. A stochastic space-time, which can be used in constructing theories
of elementary particles, was first considered by March (1934, 1937), Markov
(1940, 1958), and Yukawa (1966). Some attempts were undertaken to
construct quantum field theory in a stochastic space-time (Markov, 1959;
Komar and Markov, 1959; Takano, 1961, 1967, Ingraham, 1967; Blokhint-
sev, 1973, 1975, and references therein). Subsequently, this problem was
discussed by Roy Choudhury and Roy (1980), Roy (1979, 1986), Cerofolini
{1980), Prugovecki (1984), and Asanov et al. (1988). Mathematical spaces
with a stochastic metric were considered by Frederick (1976) and Sinha
and Roy (1987). A formal definition of a linear space with a random metric,
mainly in the Euclidean case, was given by Menger (1942, 1949), Sherstnev
(1963), Schweizer (1967), and Schweizer and Sklar (1983). Prugove&ki’s
(1984) monograph is devoted to a consistent unification of relativity and
quantum theory based on stochastic spaces. The two-point correlation
function of metric fluctuations in de Sitter space was calculated by
Antoniadis and Mottola (1986).

Stochastic or quantum geometry plays an important role in representing
gauge theories by random surfaces and strings (Polyakov, 1981a,b; Gomez,
1982) and in the construction of a unified theory of elementary particle
interactions based on the theory of strings and superstrings [see, for details,
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Green et al. (1987)]. For the practical realization of the idea of the stochastic
and quantum characters of space-time we distinguish two approaches: the
first is based on the assumption that quantum and stochastic properties of
space-time can manifest themselves at the stage of arithmetization of events
(or all reality is subject to an intrinsic stochasticity inherent in the measure-
ment process caused by the stochasticity of space-time), and the second
deals with random metrics. Our previous work (Namsrai, 1986a,b, 1988)
belongs to the first approach and is devoted to the study of physical processes
by means of quantum and stochastic space-times with coordinates £7 and
x;,, which have played the most important role in constructing the nonlocal
theory (Efimov, 1977, 1985) of quantized fields and were given by the very
nature of stochastic quantum mechanics (Nelson, 1967; Guerra, 1981).

Stochastic and quantum metrics are considered on a much deeper level,
where one should take into account the gravitational effects connected with
introducing stochastic and quantum space-times into physics. The present
paper is devoted to the study of this problem. Here we reconstruct the
theory of mechanical, electromagnetic, and gravitational processes from the
point of view of stochastic and quantum fluctuations of the space-time
metric. By analogy with Einstein’s idea of the unification of space and time,
which led to the appearance of the parameter 8 =(1-v?*/c*)”"? in the
theory, in our scheme all physical quantities depend on the fundamental
ratio f(I3/1*) with some function f defined by a concrete method of
introducing stochastic and quantum properties of the space-time metric.
Moreover, a deeper connection between the quantum nature of geometry
and gravitonlike quantized fields is shown to exist, and upper and lower
limits on the value of the fundamental length / are aiso obtained, that is,
107 =< 1=10">* cm. This larger value, with respect to Planck’s I, gives rise
to some hope that quantum or stochastic properties of space-time in the
microworld may be discovered in the near future.

Our approach may be regarded as a primitive method of quantization
(or stochastization) of gravity, based on the quantum (or stochastic) proper-
ties of the space-time metric only, and belongs to the standard perturbative
scheme where quantum (or stochastic) geometry may be understood in
terms of small fluctuations around a classical background space-time. The
theory of gravity coupled to matter is not considered here [see Dineykhan
et al. (1989), where we attempt to construct the Green functions for scalar
particle in the fluctuating space-time metric). The effective action for quan-
tum scalars in a background gravitational field is evaluated by Mann et al.
(1989) in operator regularization (McKeon and Sherry, 1987), using both
the weak-field method and the normal coordinate expansion. Attention is
currently being paid to the study of nonperturbative methods in quantum
gravity, in which the splitting of the metric into a classical background part
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and a fluctuating quantum part is not made (Rovelli and Smolin, 1988,
Kuchar, 1981, and references therein).

Deeper issues in quantum gravity were presented in the proceedings
of the second Oxford symposium edited by Isham et al. (1981) and of the
11th International conference on general relativity and gravitation edited
by MacCallum (1987). For a review of the present status of perturbative
and nonperturbative methods in quantum gravity, see Isham (1987).

The outline of the present review is as follows. In Section 1 we introduce
some formal linear integral transformations of coordinates which allow us
to formulate a general covariance principle for a fictitious “gravitational”
field e,,(x), introduced by means of the stochastic metric concept. With
this stochastic metric we reconstruct all consequences of the special theory
of relativity. Sections 2 and 3 are devoted to the extension of our formalism
to the gravitational field and to the investigation of proper tensor analysis
leading to changes to Einstein’s equation (Section 5) in stochastic space-
time. Gravitational effects due to the stochastic metric on physical processes
are discussed in Section 4. Reconstruction of relativity theory with quantum
fluctuation of the space-time metric is given in Section 6. Here we show
that quantum geometry is indeed caused by quantized gravitonlike fields,
i.e., a deeper connection exists between them. In Section 7 we discuss some
physical consequences of the theory with stochastic and quantum fluctu-
ations of the space-time metric and obtain a lower limit for the fundamental
length L

1. THE SPECIAL THEORY OF RELATIVITY
WITH STOCHASTIC METRIC

1.1. Fictitious *“Gravitational” Field, the Equivalence Principle,
and Modified Space-Time Metric

The main aim of this section is to formulate the physical principles of
introducing stochastic fluctuations of the space-time metric. Generally
speaking, an idea of a stochastic or quantum fluctuation in the metric is
needed in order to understand the unification mechanism of Einstein’s
theory of relativity with quantum laws, and is caused by a real physical
situation when we use the gravitational vacuum concept (or zero-point
radiation field) by analogy with the hypothesis of the existence of the
stochastic electromagnetic vacuum (Braffort and Tzara, 1954; Braffort et
al., 1965; Marshall, 1965; Boyer, 1975a,b; see Vigier, 1982; Namsrai, 1986b,
and references therein). It seems that a universal background or radiation
field initially arose from processes in the early universe (the Big Bang),
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acting on physical objects everywhere, and its form of interaction can be
described by means of stochastic or quantum fluctuations of the space-time
metric. A typical example is the microwave background radiation as a probe
of the contemporary structure as well as the history of the universe
(ZeP’dovich and Sunyaev, 1980). In addition, a Doppler search for a gravita-
tional background radiation with two spacecraft was presented by Bertotti
and Iess (1985). All possible zero eigenvalues for quantum fluctuations in
the presence of the instanton have been discussed by Inagaki (1977), while
quantum cosmological problems connected with the existence of the cosmo-
logical constant were discussed by Weinberg (1989).

We assume here that a gravitational vacuum-like background radiation
gives rise to some fictitious ‘“‘gravitational” field which is described by means
of stochastic or quantum fluctuations of the space-time metric. Furthermore,
it is suggested that, for this fictitious “‘gravitational” field, the equivalence
principle may be reformulated as follows: At every point of space-time in
a fictitious gravitational radiation field one can choose the local inertial
system of reference such that in a sufficiently small neighborhood of the
given point the laws of nature will have the same form as the (pseudo-)
Riemannian coordinates. We call the equivalence principle formulated in
this way the modified equivalence principle or the equivalence principle of
the first level.

Thus, we consider a freely moving particle under the action of a fictitious
“gravitational” radiation field. According to the equivalence principle of
the first level reformulated above, there exists a system of reference £ in
which a particle moves along an almost rectilinear trajectory given by the
equation

d2§a
=0 1.1
dr* (1.1)
where dr is the proper time
dr’ = —n,, d¢™ dg® (1.2)

Now, due to the stochastic fluctuation of the space-time metric caused by
some initial stochastic gravitational radiation field, the system of reference
£” becomes a curvilinear one x* with a stochastic metric, and therefore the
coordinates £“ of the system of reference free from action are functions
of x”.

In order to introduce stochastic fluctuations in the metric explicitly,
we first define the formal linear integral transformation of coordinates leading
to the passage from the usual system of reference £* with the Minkowski
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metric 71,5 to the quasi-inertial one x* with a stochastic metric g,,,(x). Let
us consider the formal transformation

Lot = X”+§J dp 0(x°—p)h&(p)+- - '+%J dp 6(x*—p)h4(p)  (1.3)

where hj(p) is an arbitrary second-rank tensor and at the same time is a
stochastic function of the argument p, and 6(x) is the Heaviside function

0(x)—{1 x>0
o x=0

Thus, according to the assumption that the coordinates £° of the system
of reference are functions of x”, equation (1.1) takes the form

i(@f_"ﬂ‘) Q£ dPx*  9PE*  dx* dx”
dr \ox* dr ox* dr*  ax”ox* dr dr

Multiplying this equation by 8x*/3¢“ and using the well-known multiplica-
tion rule

.‘?_éii_a_x_)i_af\

= 1.4
ox* ag*  * (1.4)
we get the following equation of motion:
d*x* dx* dx”
+ oy, — 1.5
= ™ dr dr (1.3)
where ), is the affine connection-like quantity defined as
8x)\ 82§a
A
L= 1.6a
Y 9EY ax* ox” (1.6a)
The connection
ag(S) g(S) Gg(s)]
p 1.6b
Vir = 28( )[ ax ax”  ox” ( )

is easily established in our case (for details, see Section 2), where the metric
tensor g(” is defined by formula (1.9).

The proper time (1.2) may also be expressed in the system of reference
with the stochastic metric by the formula

% 4 w 3€°  dx” 1.7)
x

d ’= 77013

or

dr’ = —g(j,f dx* dx” (1.8)
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where g5 is the stochastic metric defined as

o 0" 3¢°
ﬁLIZ—_axF_ axy naB (1'9)

Now, making use of (1.3), we calculate the explicit form of (1.9) and
verify its identity (1.4). For this purpose, recalling that the derivative of the
Heaviside function 6(x) equals §(x), we get immediately from (1.3)

9§

pyn =88 +380h5(xP) =085 +3e5(x) (1.10)
Therefore
s 9E* 9¢° aila
B(x) =252 5 o = 85+ 3o () 1[88 +562(x) 17
= Mo + 8, (x) +3€0(X) e, (x) (1.11)

Here we have assumed that ¢,,(x) =¢,,(x), other properties of which will
be given below.

Further, by direct calculation, one can show that an inverse Jacobian
of transformation with respect to (1.10) is

A

ax
Y 8o —3€a(x) +ie0(x)e,(x) —eh(x)en(x)e5(x) +- - -
It turns out that when this series is summed up, the result reads
ax* w1 e A
Iy 8585 +3e5(x)]! (1.12)

This identity allows us to define an inverse metric tensor by the following
formula:

gh=gh=n® — =5 =n""—"(x)+ie”(x)eg(x)— -+ (1.13a)

It is easily verified that
g8l =87 (1.13b)
for the stochastic metric.

1.2. The Euclidean Postulate and Properties of Stochastic Tensor ¢,,(x)

Generally speaking, the stochastic properties of the tensor ¢,,(x) are
defined in the Euclidean domain of variables xi =(x,=iX5,X). It is well
known that in the Minkowski space-time, an invariant measure dP[7’]
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2

depending on the variable 7°=xj—x* and at the same time obeying the

condition
J dP[+’]1=1

does not exist. In the Euclidean case, the behavior of the random field of
interest £(x®) is described by a probability distribution P[¢], or equivalently
by the moments of the probability distribution (we assume here that all the
moments exist),

(e(xF) - - e(xf>>=j [de] e(xE) - - - e(xE)Ple]

In this equation x; are points in a four-dimensional Euclidean space R*,
and the integration is over the value of & at each point in R*. Here, for
simplicity, tensor indices for the value ¢ are omitted.

The most common probability distribution encountered in practice is
a Gaussian distribution, which has

1 _
Ple]=— eXp{—% Jj d*xd*y e, (x") Dy po(x" —yE)EW(yE)}

where N is a constant chosen so that P[e] is normalized to unity and
D! (x® —yF) is the inverse of the two-point correlation

(2 (x5) 800 (¥)) = Dipupo (x° = %) (1.14)

Before going to a definition of its momentum representation, we now
give the properties of the tensor field £,,(x). Assume that the stochastic
additional term to the usual Minkowski metric given by formula (1.11) is
a weak tensor field which should be regarded as a gravitonlike field with
spin two. Then, ¢,,(x) satisfies the following conditions:

£, (x)=€,,(x)
0,8, (x)=0 (1.15)
Tre, (x)}=0

These conditions are sufficient to construct the correlation function by means
of the divisor

d;w(p) = Nuw _pp.pv/pz
satisfying the identities

p*d,(p)=0, n*"d,(p)=3
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and, therefore,
T]uuny,u,x)\(p) =O, WM%TIVAHW,M(P)Z 10

1.16
Hy.v,x)\(p)nit);(P) = H}‘-V,pa'(p) ( )

where

Huu,x}\(p) = dI-LX(P)dV)L(p) + duA(P)dvx _% y.v(p)dx)\(p)
is the projecting tensor for the spin-two field.
Now we turn to the Euclidean formulation again and define the momen-
tum representation for the covariance (1.14), the Fourier transform of which
is

D;ul,po'(xE) = J’ d4qE e_inXEﬁijl)/,po'(qE) (117)

(2m)*
Here, we distinguish two possibilities (G is the Newtonian constant):
1. Dilo(gr) = G0 (g) DIV ()
2. D2,.(qe) = GNIE,0(q:) D (q3),

where the corresponding projecting tensors IT'!, . (qr) (i =1, 2) are defined
by means of the divisors

dge)=a5ar —q58,.,  dN4e)=9.95/9% ~ S
respectively, and the distribution functions D{"(q%) and D{*(q}) satisfy the
following conditions:

(277)"‘J d*qe DP(g%) =1 (1.18a)

12(277)“‘J d*qe DP(q%) =1 (1.18b)

where [ is the parameter of the theory; we call it the fundamental length.
The appearance of the value I° in expression (1.18b) follows from a
dimensional argument.

One can accomplish the passage from the Euclidean description to
physical vacuumlike amplitudes; for this the following complex substitu-
tions are used:

x4 ix°, ga— —ig®, 8= Muw - (1.19)

As a result, the function (1.17) acquires the following form in the Minkowski
space-time:

Dw,pa(x)=i"‘(2w)“‘Jd“qe"’""ﬁi:'l,,w(q), i=1,2  (1.20)
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where D\ .(q) are constructed by means of the divisors d{)(gq)=
39, — 4 M, [d5(9) = 9.9./9° —n..] and functions D{"(g°) and d*q=
dq, dq, g° = —q5+q°. Here, it should be noted that conditions (1.18a) and
(1.18b) satisfy only the Euclidean metric.

Now our main question arises: how to link a real physical construction
of the theory with stochastic fluctuations in the metric with the Euclidean
description (1.17) or its Minkowski version (1.20). We act as follows. First,
we mention that physical observables are indeed obtained by means of
some formal averaging procedure in the Minkowski space-time which is
equivalent to the covariance (1.17) for the Euclidean formulation. For
example, the real physical meaning of the obtained metric (1.11) is its
averaged version

8 (X) =000 = M (£, (X)) Ti(E0(X) 2, (X)), (1.21)

Here, an intermediate averaging procedure {- - -), should be constructed so
that it will be reduced to taking the expectation value (1.17) of stochastic
fields ¢,,(x) in the Euclidean metric. Thus,
(€uw () - €0 (X)) =0 if n is odd
and
(g (1) B, (D)o = L T D2 (=) if mis even
{pi;h i)
the sum being taken over all the permutations of the indices {u7;}. Second,
to construct an explicit form of the function Dﬁfﬁ,pa(x) we use the Euclidean
postulate (Schwinger, 1970): mapping Minkowski space-time onto the
Euclidean space, the invariant vacuumlike amplitude Dﬁfilhwj(x,« —X;)
describing the full physical stochastic process preserves both its meaning
and invariance character. The Euclidean postulate will turn out to be more
natural if one notices that the function fo,lm,(x) possesses all the necessary
properties; the Euclidean invariant function connected with it exists
everywhere including the point x =0, which is just D,, ,(x") obtained
above. To show this we define the Fourier transform

g (x)=2m™ J d*pe "£,,(p) (1.22)

and the covariance

(o (PVepo(@e =1 '(2m) 8 (p+ @) Dyus () (1.23)
for the stochastic field &,,(x). Then

(£un(X) 0o (PN =1"'27) 7" J d'pe "D, .0(p) (1.24)
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According to the Euclidean postulate, one can carry out the substitutions
x°—>i_1x4, P0‘>iP4, Nuv > 8y
y0_> i~1)’4

in expression (1.24), and it is easily seen that the obtained result coincides

with (1.16) and (1.17). ,
It should be noted that by our construction in the given scheme, the
simpler covariance of the type

Ds.pr(0) = (£, (X) £00 (X))

will be encountered in many cases. Calculation of this type of covariance
is not difficult. In particular, the expression (1.21) takes the form

2. (x) =, +3D58(0) (1.25)

where
DY20)=i""'(2m) J d*pld,.(p)d5(p)+d,,(p)d5(p)

~3d%(p)d,,(P)1D{%(p?)
G*q:D{"(q%)

5 2 —4 J d4 { k. EL/| E

3 (277) ge X GD?Z)(ng)

P {Gz(zw)““ [ d*qs gDV (g2)
my G/l2

=3m
Here we have turned to the Euclidean metric and used the normalization
condition (1.18b).

1.3. Change of the Time Scale and Distance

By our construction, although the stochastic fluctuation in the metric
(1.11) with respect to the background Minkowski space-time remains an
invariant character of the velocity of light, it leads to kinematical consequen-
ces for particles moving with speed smaller than the light velocity. One of
them is the change of the time scale for moving clocks. For the definition
of this change, in our case, consider clocks moving with an arbitrary velocity
in the fictitious “gravitational” field given by the stochastic metric g')(x).
Then, according to the result obtained in Section 1.1, in a coordinate system
x”, the space-time interval between counts shown by the clocks is given by
formula (1.8) with (1.11),

A7, =(—g) dx” dx*)"/? (1.26)
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Since the velocity of the clocks is dx”/dt, the time interval between counts
is defined by

dx* dx*\"?
Aty =dt| —gl)—— ) )
T, ( ga dr (1.27a)
or
At =dt (—gi)"? (1.27b)

for the special case when the clocks are at rest. Taking into account the
explicit form (1.11) and assuming that the stochastic fluctuating metric is
small, we obtain a series over the field ¢,,(x):

Az, =dt [AY? =347 (e,,(x) +5e0(x)e,, (x))utu”
—3A7 e, (x) g, (X)) u ulu’ + - - -] (1.28)
where
ut = dx"/dt, A=—n, u"u”

Further, we carry out the intermediate averaging procedure as done above
and calculate some tensor algebra. The result reads

Ar=(Ar),=(1-v*/*)"[1+5D(0)] dt (1.29)
Here, we have used the following expressions:

p.u pa(o) 9(7';1.an¢7+ nuonup %nuvnpo')ﬁ(o) (130)

and

Gz(2w)“‘J d*qeqtD{"(q%)  for (1.18)

D)= G/P for (1.18b)

(1.31)

Now, let us consider the element dl of the spatial distance in the
space-time with stochastic metric (1.11). Due to the stochastic character of
the space-time metric, the value of dl fluctuates and becomes of no definite
length. According to the definition of ‘“spacelike” distance in the usual
theory of relativity, one can calculate a full “time” interval between leaving
and coming signals at the same point of space-time with a stochastic metric,
which is given by the formula (for details, see Landau and Lifschitz, 1971)

) = dxl) = 2(~g) (g6 g - 27g) dx’ dx']"”,
(1,j=1,2,3) (1.32)

According to formula (1.27b), the corresponding interval of true time A7,
is obtained by multiplication of (1.32) by the value (—g&))"/*/c and the
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distance dl between both points defined by further multiplication by ¢/2.
Thus, we find

lZ - (gEJS) __gf)sl)goj)/g(s)) dxi dxj
In the approximation of the weak-field limit its averaged value acquires the
form

= <dl >s - [TIU + DOI 01(0)+4D11p(0)] dxi dxj

Substituting here the explicit form of the functions D...,(0) by the formula
(1.30), we get

= di3[1+5D(0)] (1.33)
where D(0) is given by formula (1.31), and
dlf =8, dx' dx’, =8y
is'the standard spatial element of the Euclidean distance between two points.

Notice that the quantity

Y =gl — gl gl gl (1.34)

is the three-dimensional metric tensor defining the metric, i.e., the geometric
properties of space.

Now we turn to the problem of calculating the red-shift contribution
due to the stochastic fluctuation of the space-time metric. For this purpose,
let us consider the particular case (1.27b), when the clocks are at rest. As
in the usual theory of gravity, in our case we do not observe the coefficients
of change of the time scale appearing (1.27b) by measuring the time interval
dt between two counts and comparing it with the averaged value (Ar),.
However, we can compare the coeflicients of the change of the time scale
due to the fluctuational nature of the space-time metric at two different
points of the field. It is assumed, for example, that at point 1 we observe
a light signal coming from point 2, where it appears as a result of some
atomic transition. Therefore, according to formula (1.27b), the time between
two successive signals arriving at point 1 will be connected with the time
between those leaving from point 2 by the formula

dty = (Ar,)[—goo(x2)]7"?
If an analogous atomic transition takes place at the point 1, then the time
separating the arriving light wave signals measured at point 1 is equal to
f = (A7) [~ goo(x)]"?
Thus, for the given atomic transition, the ratio of frequencies for (observing

at point 1) light leaving from point 2 and light coming from point 1 is given
by

(vaf v1)s = [goo(xz)/goo(xl)]l/2 (1.35)



Stochastic and Quantum Space-Time 605

For the limiting case of a weak field €,,,(x), v,/ »; = 1+ Av/v and expression
(1.35) takes the form

(2/ v1)s =1+ (Av/w),
=1+3[£00(X1) — £00(X2)]
+aleb(x1) €0, (x1) — £6(x2) €0, (¥2)]
+3leg0(x1) — £50(%2)1+2800(%1) = §800(%2) £00(X1)
After the averaging procedure, we have
Av/v=(Av/v), = 1D 00(0) —5Doo 00(X1 — X,) (1.36)
where
Doo,00(0) =3D(0)
and
Dog ool —x5) = (27)™* J d*p Moo 00(P) e P TRD(p?) (137
We first calculate D(0) for both cases (1.18a) and (1.18b). It is easy

to verify that according to the normalization condition (here and below
omitting index E on the momentum variable)

F&ﬂ”jd%ﬁ@ﬁ=
for the case (1.18b) the function

D(0) =

NN
=l Q

(1.38)

for any distribution D{®(p?), i.e., it does not depend on its concrete form.
For the case (1.18a), an explicit form of the distribution function D{V(p?)
should be given. The choice

DY (pY=c,(1+p*P)° (1.39)

with the normalization coefficient ¢, =6-2° 7° gives

D(0) =§ = (1.40)
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for the case (1.18a). The second term in (1.36) given by formula (1.37) has
a potential character and depends on the concrete realization of experi-
mental situations. We calculate it in the static limit p,=0 and in the case
when the distribution function is given by the formula

DY) =17 2°P(1+p*P)° (1.41)
Taking into account that
Hoo,oo(P) = %(P% - 7700172)2 = %P4

we have

Dg)})),OO(xl -X,) = %Gz(zﬂ')_S J‘ d3P e_ip(x‘hxz)l“‘ﬁ(l)(l)z)

— (28G213/157T2) J- d3p p4(1 +p212)~5 e—ip(xl—xz)
Standard integration over the angles ¢ and 6 gives

o 27 aT
Digoo(x) = (28G2l3/1572)J dppzj dqoj do sin ¢
0

0

% e—i1p|-|x|cos 0(1+p212)—5
=(2’°G213/157-rx)J. dpsin px-p’(1+p* >~  (1.42)
[4]

where x =[x, —x,|. After some elementary transformation this integral is
reduced to the standard one

286213 d2
- dy —3/2(1+xy 1/2) eXp( xy 1/2)

4 G b AN (XN
—457[154’15 (7)—‘10(1> +<-I') ]e (1.43)

For the second case (1.18b) with the distribution function

DP(p*) =2°ml(1+p’P)

00 oo(x)

the integral (1.42) acquires the form

X —-X
g,%;m(x)—ﬁ(HY) e /! (1.44)

Collecting the results (1.38), (1.40), (1.43), and (1.44) together, we have for
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expression (1.36)

()G
v stoch_ V /s

56 5 G° : § }
1 5?_4_57€-x/1[15+15§_107—2+(?> ] for (1.18a)
“4]5G 4G/ «x
DY T ) e :
28 4 ( 1)8 for (1.18b)

(1.45)

From the calculated contribution of (1.36) with (1.38) and (1.40) to
the red shift due to the stochastic fluctuation in the metric we now find an
estimation of the fundamental length. For this there is one interesting
experimental test of the gravitational red shift, realized by Pound and Rebka
(1960). They allowed a photon emitted by *’Fe, due to an energy transition
of 14.4keV (0.1 mks), to fall from a height of 22.6 m, and observed its
resonance absorption by the same atom *’Fe. In the usual theory of gravity,
if the equivalence principle is valid, one must expect that the light frequency
falling into the target will be shifted by the classical value

(AV/ v)c] = “Ad) = ¢(xl)|target_ (,b(xz)lsource =2.46 X 10;15

At present, this theoretical calculation coincides with the experimental result
(Av/ V)exp=2,6><10_15 to an accuracy of about 1% (Pound and Snider,
1964). Therefore, the contribution due to stochastically fluctuating metric
in (1.36) should be less than the experimental errors:

(Av/ V) o < 0.26 1077

It is easily verified that the second term in (1.36), in accordance with (1.43),
(1.44), and the condition of the experiment, is much smaller than the first
term, and therefore, from the first term of the latter expression in (1.45),
we conclude that

[=10"*cm (1.46)

Thus, we have shown that the change of the time scale due to the stochastic
fluctuation of the space-time metric allows us to estimate the lower bound
on the value of the fundamental length. However, the most stringent bound
will be given in Section 7.

1.4. Appearance of an Additional Force Due to Stochastic Fluctuation in
the Metric

We see that particle motion (1.5) in a fictitious “gravitational” field
given by the metric (1.11) is defined by the quantities v, in (1.6). By
definition, the derivative d’x”/dr’ is the four-acceleration of the particle.
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Therefore, one can call the quantity —my},u*u” the four-force acting on
the particle in this fictitious “gravitational” field. Now, we define this force
for the constant fictitious field ¢, (x) = £,,(x). According to the usual theory
of relativity (for example, see Landau and Lifschitz, 1971) the necessary
components of v}, in the three-dimensional case are

760=%h;i

Ch, }
o =7 (85-8)) —3gh’ (1.47)

’)’Jk Ajk+ [gj(gk gfk)+gk(g}i—g§j)]+%gjgkh;i

Here, all tensor operators (see Section 3; in particular: covariant differenti-
ation, raising and lowering indices) are carried out in the three-dimensional
space with the metric y; of (1.34) by means of the three-dimensional vector

—go:i/ 8oo and the three-dimensional scalar h = —g,,. The quantity A,k
is the three-dimensional Christoffel symbol constructed of components of
the tensor v;, since in accordance with formula (1.6b), v, are formed of
the components of g*° and g,,, where the components of the contravariant
tensor g** equal

|/

g'=v",  g'=g'=7",
Substituting (1.47) into the equation of motion
du' i i i i
E = _700(”0)2 - 2701'"0"] - ijujuk

and making use of expressions [for detalls see Section 1.5 and formula
(1.64)]

=B, u=h"Brgule  B=(1-v/)

for four-velocity in space-time with fluctuating metric and after simple
transformations, we get

d i N s j s
;;[(vﬂﬂ}—% B - R Bl g) S~ Moo e (148)

Acting on a particle, the potential “force” f is the derivative of its momentum
p with respect to the (synchronized) proper time and is defined by the
“covariant” differential in the three-dimensional space

. B Dpi d ) . ;
i 1. — -1 7 NI Jak
fs=cB Dr B n Bmv'+ Aj mBv’v
From (1.48) it follows that
fs=m/3c2{—grad In \/F-F\/F]:erotg]} (1.49)
c
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This formula coincides formally with the force acting on the particle due
to the usual constant gravitational field. Notice that in our case this force
has a stochastic character since the expressions h and g entering into it
possess random properties. Now we calculate an averaged force. For this,
we decompose it over the weak field ¢,,(x) and carry out an averaging
procedure according to the previous sections. In the weak-field limit we have

Invh=- 2800 %8850,7 “‘%5(2)0"“ 0(53)
8 = g' =—{no; + &0 +%385ip)(“1 + EOO+%£8£0p)~I
= £9; + €9i€00 +%535ip
Therefore, in this approximation, the force (1.49) acquires the form
fi= mﬁcz { Vf(%£00+é"5880p +7115(2)0)
+[1 _%800_%(8830;; + Sgo)]
1 "

X ; 8ijkvj{':knman(EOm + 80m800+¢_1808mp) (150)
where &, is the full antisymmetric tensor of the third rank. To calculate an
averaged force, one needs to modify the distribution function D,(qz) in the

presence of a particle with momentum g, and mass m. Choose the Gaussian
normalized distribution

(277)‘3j d*q Di™(¢) =1

. (1.51)
Di™(q%) = (27)**F exp[—(q—g0)*I*/2]
and carry out an averaging procedure for an expression of the type
3:€6(x)* £0,(x)
by the formula
@:£5(x) - £0,(x)). = (27) G J d°q 4:D%0,(q) (1.52)

where we have used the following definitions:

£6(x) = (27r)“3J‘ d’qy e"E5(qu)

i€, (x) = i(2m)~ J d342 eiqzxqzx'go;;(q;z)
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and
(8(a1) €0, (@) = 1" (27)*8(qy + 42) D5 o,(q1) (1.53)

It is just a modified version of the covariance (1.23) for the three-dimensional
case. Then, from (1.50) we find

(=V;InVhy, =¥3:e5(x) - €0,(X)) +53:800(X) * €00(X))
=-3G*(2m)~ J d*q ¢*qD{™(q") (1.54)

Here, the factor q* results from the identities
A8 0p(@)lag0=[dE(q)do, (9) + d(q) doo(9) —3d5do, 1lagw0= 4"
and

AOO,OO(q)Iq(]»O = %q“
for the divisor d!)(q) = ¢.q,. — 4°n,., and distributions of the type of (1.18a).

uv
On the other hand, it is easy to verify that the second averaged term in

{1.49) or (1.50) becomes zero by the construction of tensor structures
Aoo,o.‘(‘])lqgeo = Ag,ip(‘])llﬁ)-’O =0

Thus, an averaged force (1.49) is determined by the formula (1.54), the
calculation of which is not difficult for a concrete form of the distributions
D{™(g%). For the Gaussian distribution it takes the form

fi=(fDs=—mBG I p35+ (pI)* +14(pl)],  p=vp" (155)
The equation of motion in the nonrelativistic limit becomes
dv

i =G * mev[35+ (mol)*+ 14(mol)*] (1.56)

where the dimension of the particle’s mass m (A = #/ mc) is expressed as a
length, i.e., [m]=[cm™']. We see that finding the particle’s trajectory is
complicated and is reduced to the solution of an essential nonlinear differen-
tial equation of first order. However, the case (1.18b) is very simple, for
which we have

fi=—-mBctp,GlI™* (1.57)
or
d
d_: =—lmeGl™ %

The latter gives
v(t) =v, exp(—iGPmct) (1.58)
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Thus, in this particular case, the stochastic fluctuation of the space-time
metric gives rise to a friction force in the dynamical motion of a particle.

It should be noted that instead of a minus sign in the definition of the
force (1.55), it is quite possible to take a plus sign. This uncertainty in the
choice of sign for the force due to a stochastic metric is caused by the two
possible equivalent definitions of the factor exp(xiqx) for the Fourier
transform of the stochastic field ¢,,(x). This problem will be discussed in
Section 7.

1.5. Particle Motion in Fictitious “Gravitational”’ Field

1.5.1. Four-Velocity

When there is no external force acting on a particle, its equation of
motion in the fictitious “‘gravitational” field with metric (1.11) is defined
by formula (1.5). By means of the concept of covariant differentiation
defined below (Section 3), this equation may be rewritten as

Du*  du’
= + A oy b .
Dr = dr Yo U’ =0 (1.59)
where y%, is the modified affine-connection (1.16a) and
dx*
A= .60
cdr (1.60)

is the four-vector of velocity. The components of the four-velocity depend
on each other since dr’ = —g{) dx* dx”, and therefore

ul=guru =—-1 (1.61)

Geometrically, this means that in space-time with a stochastic metric, u*
is also a unit vector. By analogy with the definition of the four-velocity, we
call the second derivative

d’x”  du*

cdr’ cdr
the four-acceleration. Differentiating relation (1.61) with respect to the proper
time ¢ dr, we find

du’ du’®

(s), M =y —_
T oedr  Cedr

i.e., in the fluctuating space-time, the four-vectors of velocity and acceler-
ation are “mutually perpendicular” (here and below we omit the index s
any stochastic quantities).

0 (1.62)
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It is interesting to define four-velocity for the particular case when the
stochastic field ¢,,(x) does not depend on the time variable x% we call it
world time. If a particle leaves from point A at world time x° and arrives
at point B in the neighborhood of A at the moment x°+ dx°, then for the
definition of velocity one needs to take not the time interval (x°+ dx®) —x°=
dx°, but the difference between x°+ dx° and the moment x°— (g;/ goo) dx’,
which is the same time x° at the point B as well as at A:

(x0+ dxo) - (xo_ 8oi dxi/goo) = dx0+g0i dxi/goo

Multiplying this by the factor (—gg)"/?/c, we obtain the corresponding
interval of the proper time, so that velocity is

v'=cdx'[h(dx®—g;dx")]/?
where we have used the notation

h=—goo, g = —8oi/ 8oo (1.63)

Notice that for such a definition, the interval ds = ¢ dr is expressed through
velocity in the usual form

ds” = —goo(dx®)> —2g,,; dx° dx’ — g, dx' dx’
=h(dx’—g; dx")’ — dI* = h(dx°— g, dx")*(1—-v*/ c?)
Moreover, v° needs to be understood as the square of a three-vector in the

space with metric tensor y;, (1.34):

R . )
ve= 1, v; =y, v’

The components of the four-velocity u’' = dx'/ds are equal to
ui — (Ui/c)(l __v2/c2)—-1/2

o _ ) (1.64)
W= VA=V )V (g )1V )

1.5.2. Four-Force

As in the case of relativistic mechanics, we define the four-force acting
on a particle with the coordinates x”(7) in the space-time with a fluctuating
metric by the formula

2. x

fA=mc—2‘?+m'y;\wu“uV (1.65)

Obviously, if f* is known, then one can calculate the motion of a particle.
Now we link this force with the usual force F* defined in the local inertial
system of reference £ free from the fictitious “‘gravitational” field e,,(x).



Stochastic and Quantum Space-Time 613
Note that upon the passage from the £ to the x* system of reference the
differential of coordinates transforms in the standard way

ax*

ag”
while dr is invariant. Therefore, from (1.65) it follows that the rule of

transformation for the quantity f* acquires the form

=(9x"/3€*)F* (1.66)

o

Any quantity, such as dx® and [ transformed by rule (1.66) is called a
four-vector (for details, see Section 3).

It is well known that in accordance with the special theory of relativity,
the usual relativistic force F® is connected with the Newtonian force
fn (f% =0) by the formula

F=fy+(8—1v(v-fy)/¥
=B(v-fy)=v-F
where
B=(1-v)"" (e=1)

In space-time with a stochastic fluctuating metric the Jacobian of transforma-
tion between coordinates ¢“ and x* is given by (1.12), and therefore, the
force (1.66) is easily found by means of the known usual force F®. Notice
that from condition (1.61) or (1.62) it follows that

2 (‘)f" (1.67)

To show that it does indeed hold, we remark that the right-hand side of
(1.67) is invariant under the transformation between the coordinates £* and
x*, i.e.,

g9 ax* _ ox" dg®

2t o ax”
wrf Eur aE” agB dr
Making use of the definitions (1.4) and (1.11) for the Jacobian of transforma-

tion 9x*/3&% and the stochastic metric gﬁfﬁ, we get

gt X" dx’” oE” £ ax* ax” __ d¢”
f = 17;70' v o B
ax* ax” 9€” 9¢ dr
o d€°
- naﬁF

dr
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The latter equals zero in the system of reference in which a particle is at
rest. Indeed, in accordance with the usual special theory of relativity, if the
particle is at rest at the given time moment, then proper time dr coincides
with dt, so that F'=f',, where f are the Cartesian components of the
nonrelativistic force F and F°=0.

1.5.3. Energy, Momentum, and an Additional Potential

The four-momentum of the particle in our fictitious “gravitational” field
is defined as

PH = mcu"
and its square equals (omitting the symbol s on the metric tensor g,,)
8P P’ =P P =—m’c? (1.68)

Instead of 2, substituting 4.5/dx* into (1.68), we find the Hamilton-Jacobi
equation for the particle in this “gravitational” field from the expression

aS 4S8
Wax_"ax” m?c®=0 (1.69)

We observe that due to the stochastic fluctuation of the space-time
metric, in the limiting case, when the velocity of the particle is small, an
additional nonrelativistic “potential’ also appears. To connect this fictitious
“potential” with the metric tensor g,, we act in the same way as in the case
of the usual theory of gravity (Landau and Lifschitz, 1971). Let

L=—mc*+3imv’ — me;

be the Lagrangian function of the nonrelativistic particle in our fictitious
“gravitational” field. The nonrelativistic action of the particle in it has the
form

Sﬁj Ldt=-mec(c—3v’/c+¢s/c) dt

Comparing this with the expression S =—mc | ds, ds = c dr, we see that
ds=(c—3vV’/c+¢;/c) dt

Taking the square arid omitting terms going to zero at the limit ¢ - o0, we find
ds’ =(c*+2¢;) dt* —dr’ (1.70)

where we have used the equality v dt = dr.
Thus, the component of the metric tensor gy, in this limiting case takes
the form

goo=—1-2¢;/c’ 1.71)
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From (1.71) it is easily seen that other components of g,, are

8y = 9y, g20:=0

Thus, in the nonrelativistic case, the stochastic fluctuation of the space-time
metric gives rise to the appearance of an additional “potential”

¢ =3 (=1 goo) (1.72)
and, in accordance with formula (1.11), its averaged value is constant,
<¢}1)>s =%Czﬁ(0), Moo = —1 (1.73)

everywhere. If we take into account the next term in the approximation,
we have

@ =3¢ [~ £00(x) —3£8(x) €0, (x) —3£50(x)]

In particular, when the particle moves in the constant fictitious field
&,.(X) its energy is defined as the derivative (—c 35/0x°) of the action S
with respect to the world time x°. For example, it follows from this that x°
does not enter into the Hamilton-Jacobi equation explicitly. Defined in this
way, the energy € is the time component of the covariant four-vector of
momentum p,, = mcu, = mcg,,,u". [n a static field, ds’ = —goo(dx°)* — dI*, and
therefore,

dx® dx®

&, = —mcigy — = —mc’
0 € Loo ds 8oo (o0 dx2—dI?)1/?

We intreduce the velocity
dl cdl

V===
dr (—goo dx%)l/z

of the particie measured by the proper time, i.e., by an observer located at
a given place. Then, for energy we get

Eo=mc*(1=v*/ ") (—goo)? (1.74)

This is simply the quantity which remains unchanged upon the particle
motion in the constant fictitious field ¢,,(x).

On the other hand, by using the definition of velocity (1.64) for a
particle moving in a stationary field, it can be easily verified that the
expression

&= —mc gou’' = mc*h(u®—gu'’)

after substituting (1.64) into it, gives the form (1.74), as expected. Finally,
the averaged energy in our scheme becomes

€ = (8o, = mc*(1-v*/ )V 1+5D(0)] (1.75)
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The latter may be understood as a change of the particle mass m—-> M =
m+ 8m in the space-time with a stochastic metric:

&€ = Mc*(1-v?/c?) V3, M = m+ 8m, dm=2mD(0) (1.76)
It is important to notice that if from the very beginning we use the
Euclidean postulate, then the correction of (g,,(x)s,5(x)) is constructed

immediately in the Euclidean metric. Then, the covariance (1.30) acquires
the form

D,pr(0) = 3(8,58.+ 808, =38,,,8,0) D(0) (1.77)
where 8, is the Euclidean metric:
{0 if p#w
6;1.1/ = .
1 if u=v

In this case, the corresponding sign in expression (1.73) and in the second
term in (1.75) is changed conversely; the result reads

(¢r)s = —7eD(0)¢?

and
& =mc*(1—v*/ D)™V [1-5D(0)] (1.78)
or
&€ = Mc*(1-v*/c*) V2, M=m—ém
where

dm =3SmD(0) (1.79)

Finally, it should be noted that in accordance with the Euclidean
postulate, an expression of the type &%(x)e,, (x)u*u” is transformed to
ef(xF)e,, (xF)ultuy, ut =(ut =iu’,ug =u), and, therefore,

(e0(x") ey, (x5 ubup =38, ulur =>5(~ug+u’)
which coincides with covariance (&£(x)e,,(x)).u*u” obtained above. For
this reason, the expression (1.29) does not change and its invariant properties

remain in both the Euclidean and pseudo-Euclidean descriptions of stochas-
tic processes.

2. THE GENERAL EQUIVALENCE PRINCIPLE IN SPACE-TIME
WITH STOCHASTIC METRIC

2.1. Reformulation of the Equivalence Principle

Now we consider an external gravitational field and attempt to recon-
struct the general theory of gravity from the point of view of the stochastic
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fluctuation of the space-time metric. In this case, our correspondence
principle says that when the external gravitational field is absent, then the
modified general theory of gravity, expounded below, should become the
special theory of relativity with the stochastic metric reconstructed above.
It turns out that successful reconstruction of the expected theory is possible
if we use the equivalence principle with respect to the system of reference
x* with stochastic metric (1.11).

It is well known that the equivalence principle between gravity and
inertia can be understood as the reaction of a physical system on the external
gravitational field. It is asserted that no external static homogeneous gravita-
tional field whatever can be detected in a freely falling elevator, since in
this field an observer, test body, and the elevator itself acquire the same
acceleration. Following Weinberg (1972), one can easily prove this for an
N-particle system moving with nonrelativistic velocity under an action force
(for example, electromagnetic and gravitational) f(x, —x,,) in the external
gravitational field. The equation of motion is

m, d’x,/dt’ = m,g+Y f(x, ~X,), nk=1,2,...,N 2.1
k

Assuming the following non-Galilean transformation of space-time co-
ordinates

X =x—igt’, =t (2.2)

one finds that the term with g is compensated by the inertial “force” and
the equation of motion takes the form

m, d’x/dt? =Y f(x,—x) (2.3)
k

Therefore, an observer O using coordinates x, ¢ and a freely falling colleague
O’ using coordinates x', ¢’ do not find any difference in the laws of mechanics,
with the exception that O will observe the influence of a gravitational field
where O’ will not.

However, in our case, both observers are under action due to an
additional fictitious “gravitational” field with stochastic metric g'’). This
fact requires redefinition of the concept of inertia or an inertial system of
reference. Under an inertial system of reference we understand a system of
reference in which a fictitious “‘gravitational” field is always present. We
call this system of reference the quasilocal-inertial system of reference.
Thus, in our scheme, the generalized equivalence principle as formally
formulated is based on the assumption that at every point of space-time in
an arbitrarily chosen gravitational field (not only a static one) one can
choose “the quasilocal-inertial” system of reference x* (with stochastic
metric) such that in a sufficiently small neighborhood of the given point,
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the laws of nature will have the same form as in the nonaccelerated Cartesian
system of reference. The equivalence principle thus formulated will be called
the generalized equivalence principle or the equivalence principle of the
second level,

2.2, Gravitational Force and Stochastic Metric

Let us consider a “freely” moving particle under the action of purely
gravitational forces. Here, the word “freely” means that an additional
stochastic radiation field ¢,,(x) acting on the particle is present everywhere,
which violates slightly the usual equivalence principle with respect to the
(pseudo-) Riemannian system of coordinates. To obtain a general form of
the equation of motion of the particle in the presence of arbitrary gravita-
tional fields (including the fictitious stochastic background field ¢,,), we
formally consider a freély falling system of reference £€” in which a particle
moves along a rectilinear trajectory given by the equation

d*¢*/dr*=0 (2.4)
where

dt? = —n,, d£* dgP (2.5)

is the proper time. Notice that, according to the equivalence principle of
the first level formulated in Section 1, from equations (2.4) and (2.5) we
have obtained the corresponding equations (1.5) and (1.8) for the fictitious
stochastic field e,,(x) with the stochastic metric (1.9) given by formula
(1.11). Now assume that we take any other system of reference z*, which
may be the (pseudo-) Riemannian system of coordinates resting with respect
to the laboratory system and a curvilinear, accelerated, rotating, or any
other system of reference at our desire. In this case, the coordinates £ (or
x") of a freely (or “almost freely”) falling system of reference are a function
of z*, and equation (2.4) acquires the form

&P, dedr
dr? *odr dr

(2.6)

by analogy with the equation of motion (1.5) of the particle moving in the
fictitious stochastic field £,,(x) only. By our correspondence principle, if
external gravitational fields are absent, equation (2.6) turns into (1.5). In
this case we must put z"=x". It is assumed that the connection between
them in the presence of the external gravitational fields [with the exception
of the fictitious stochastic background field &,,(x)] will be defined in a
usual form as in the linearized theory of gravity. In (2.6) the function '},



Stochastic and Quantum Space-Time 619

is just the affine connection defined by
A az)\ 82611

v 27
*9E" 9zt 9z 27
It is obvious that in our case the well-known multiplication rules

ox* 9z* 9z 9x*

———a=-——ﬂ=62 (2.8)

az* ax*  3x* oz
or

9&* 9z Py

g § A (2.9)

gzt 3&¢* ag" ozf

are valid. The proper time (2.5) can also be written in an arbitrary (stochastic)
system of reference:

8
A= —n., 25 af dz (2.10)
or [using the definition (1.11)]
d7'2=—GW dz" dz” (2.11)
where G,,, is the true metric tensor defined by the formula
_3g" a¢° AE° ax™ 9&° ax°
W gz 0z T x 3z¢ ax” 927 0
s ax* ax”
~gaplx )az oz” (2.12)

Here gff,%(x) is given by formula (1.11). Taking into account (1.11) and
natural transformations of the tensor quantities

ax* ax”? ax’

; 377 377 SZ(Z)=€§(X)87

Ey,yzap,v(z) aﬁ'(x)
and
ax®

sau(z) = E5a —8-2—;

from (2.12), we immediately get

y.v(z) guv(z)+S;LV(Z)+4€/,L(Z)8V;7(Z) (2-13)
where
o, Ox*axf
gu(2)= Mop o v (2.14)

is caused by a purely external gravitational field and turns into n,, when
the latter is absent (z” = x"). The last two terms in (2.13) result from the
stochastic fluctuational properties of the space-time metric.
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For the photon and neutrino the equation of motion in the “freely”
falling system of reference has the same form as (2.4) with the exception
that their proper time (2.5) is not independent, since for these particles the
right-hand side of (2.5) vanishes. Instead of 7, one uses o= £°, so that
equations (2.4) and (2.5) take the form

d2 @
52 ~0
do
_, gt def
"t 4o do
as in the usual case. By the same method as above, the motion in the system
of reference with a stochastic metric in an arbitrary gravitational field reads

d*z* dz" dz*

+T* —= .
do? " do do 0 (2.15)
dz* dz”
-G, — —= 2.
“ do do 0 (2.16)

where I'},(z) and G,, are expressed by the same formulas (2.7) and (2.13),
respectively.

2.3. Connection Between G,,,(z) and T'},,(2)

As is shown above, in space-time with a stochastic metric the field
defining the gravitational force is expressed through the “affine connection”
I'%..(z), whereas the proper time interval is given by the metric tensor G,,,(z).
Now we show that G,,,(z) is also the gravitational potential, i.e., its deriva-
tive gives the field I'},(z). Notice that the connection obtained below
formula (2.24) also preserves its form for the quantities defined by formulas
(1.6a) and (1.9); it is just (1.6b).

We recall that the metric tensor is given by the first term of ex-
pression (2.12),

3E* 9€°
GI-W = T’aB a_f; afv

Differentiation of this term with respect to z* yields

9G,, & a¢® 9> 3P
—Lr gt ——— 1, 2.17
9z 977 az* az” 1B 9zk 9z 9z” 1P 2.17)

Further, multiplying equation (2.7) by the Jacobian 9¢°/9z* and making
use of the multiplication rule (2.8), we get the following equation for £*:
O a9

az*azr M ezt (2.18)
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Substituting (2.18) into (2.17), we find

0G,., e 9E” 9¢8 0 BE 98
3z* )\M«apa v Map auaz,gnaﬁ

With definition (2.12) this equality takes the form

0G,,
—8—2—’;‘—=F§MG,,V+I“;’,,GW (2.19)
To express the generalized affine connection I'},,(z) through the metric
tensor G,,(z), we add to (2.19) an analogous relation with rearranged
indices 1 and A and subtract from (2.19) an analogous relation with
rearranged indices v and A. As a result, we get
aGW+aGAV_aG

A E 8 8 8
aZ)\ gz* BZ}:’ - GSVF)\;J.+ Gb‘ur)\v+ GEVFM/\—*— GS)\F;.L

——GS/\ GS;L VA
= 2G5er (2.20)

where we have taken into account the fact that '}, and G,,, are symmetric
under the rearrangement of indices p and ».

Further, one needs to define an inverse tensor G*° with respect to
G, ie.,

G G;, = 83 (2.21)

It should be noted that definition (2.12) ensures the existence of the inverse
tensor

3z" az
G =G = go®
g(>a axP
=gy —e"(2)+3e"(2)e}(z) + O(&®) (2.22)

Indeed, making use of the well-known multiplication rule (2.8) and relation
(1.13b) we find

p 02" 8z° 9x” ax’
Y S
ax® axP 0z° 9z

GVUGEV = g(s)

(s)90%”
8(s) T B axP 8ya 52°

=—— =57 (2.23)

which coincides with condition (2.21).
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Now we return to equation (2.20), multiply it by G*, and find

aG,MV(Z) +8G)\V(Z) _BG;LA(Z)}

2.24
oz az* 8z” (2.24)

I7.(2) =%G<”;3{

Sometimes, the left-hand side of an expression of the type (2.24) is called
a Christoffel symbol and is denoted by {,.}. In our case we call it the
generalized Christoffe]l symbol. The relation between I'y, and G, allows
us to obtain an interesting consequence of the theory, which asserts that
the equation of motion of an “almost freely” falling particle in space-time
with a stochastic metric automatically preserves the form of the proper time
interval dr*. Using equation (2.6), one can find that

4 (g, & 4 90, 2 b g
dr

“ dr dr) 8z dr dr dr

d?*z* dz* dz* d*z*

+ +G,,—
G dr* dr G dr dr?
3G, dz* dz° dz*
=(Zez_g, 4G, I | 2L
(azA wolor = G "*) dr dr dr

Taking into account equality (2.19), it is easy to see that this quantity
disappears, and therefore,

da ds”_

*odr dr

-C (2.25)

where C is an integration constant determined by initial conditions. Further,
since initial conditions are always chosen in such a way that dr” is defined
by (2.11), we obtain C = 1. Thus, equality (2.25) guarantees that formula
(2.11) is used along all the particle’s trajectories. Analogous initial conditions
for massless particles leads to C =0 (where 7 is changed by some other
parameter o) and the equation of motion ensures that the quantity

dz” dz*
Curde do

becomes zero along all trajectories.

2.4. The Newtonian Approximation (Linearized Gravity)

In order to find the connection of our model with the Newtonian
theory, consider a particle moving slowly in a weak stationary gravitational
field. We proceed according to the linearized theory of gravity. Further, it



Stochastic and Quantum Space-Time 623

is assumed that if the particle is sufficiently slow, then one can neglect
dz'/dr (i=1,2,3) withrespect to dt/ dr, and equation {2.6) acquires the form

2_p 2
2" e <ﬂ) =0 (2.26)

dr? \dr

Since the field is stationary, all time derivatives of G,.(z) disappear, and

therefore,
G
Tfy=—3G" =22
0z

Moreover, if the field is still weak, one can introduce an almost Cartesian
system of coordinates in which

G[U’ = 17/J.V+H;.LV5 IH;,cvl<< 1 (2.27)

where H,, consists of two parts: h,, is due only to an external weak
stationary field and ¢,,+3¢%¢,, is caused by the stochastic fluctuation of

the space-time metric. Thus, in the first order of H,., one has
oH,

a _ _1_ap 7700
FGo=—27m 527

Substituting this expression for the usual affine connection into the equation
of motion (2.26), we get

d’z 1(dt\’
't
dr*~

The solution of the second equation in (2.28) is dt/ dr = const, and therefore,
d*z/ dt* =1V Hy, (2.29)

In accordance with the usual theory of gravity, the quantity hy, is defined
by the Newtonian potential ¢,

hoo = —2¢n
and therefore
Hoo= =2 + £0o(X) +1e5(x) £, (x) + 162,

where the last term appears from the second order of H,,. On the other
hand, as is shown above, due to the stochastic properties of the space-time
metric, an additional “scalar potential” (1.72),

o7 = —3ceon(x) +5e8(x) 20, (x) +1e50(x)]
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appears in our scheme, which gives rise to the change of the Newtonian
potential

On = ON=NnT @5

Thus, in a space-time with a stochastic metric the Newtonian law is changed
and acquires the form

d’z/dt* =-Vo'y (2.30)
In this approximation, the space-time metric is given by the formula
Goo=—1-2¢n + £0o(X) +%5§(x)?0p(x) +%£§0(x) (2.31)

The gravitational potential is of the order of 107>° on the “surface” of the
proton, 10~° on the surface of the Earth, 107° for the Sun, and 10™* for the
white dwarf-type stars.

Finally, it should be noted that in the given case, the gravitational force
acting on the particle is given by formula (1.49); there, the quantity h
entering into it now takes the form h =—G,, so that

h'2=1+¢n —3¢N —Fe0o(1— dn) ~§(£50 F £550,)
and
~VInvh=-Vén+Veia+iV[eo(l—2¢n +36%)]
+3V[eto(1-3¢n +5 )]
+3VIebeo,(1-2dn +303)] (2.32)

Therefore, the potential force is changed and its value is defined by the
averaging procedure

F=[1+43Dg0,00(0) +5D80,(0) —2¢ 5 IF n (2.33)
where
Fn=-V bn, Doo,oo(o) = %D~(O)

$D(0) for the Euclidean metric

D56, (0)= ~
80,(0) {—%D(O) for the pseudo-Euclidean metric

In (2.33) we have assumed (g4V £o0). =(£5V &g,). =0 for the field. When
¢n =0, i.e., the external gravitational field becomes zero, expression (2.32)
coincides with the result obtained above. This is just our correspondence
principle.
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2.5. Change of Time Scale in Gravitational Field with Stochastic Metric

In the presence of a gravitational field the red shift of light frequencies
should be calculated as above. In the given case, the time interval between
counts is now defined by

ﬂ_[ .o dz”]‘“z
A7 G dt dt
or, in particular, if the clocks are at rest, one gets
dt/Ar=[—Goe(2)]?
Hence, it follows that the ratio of frequencies for (observing at point 1)

light leaving from point 2 and light coming from point 1 due to some atomic
transition is given by

vaf vi=[Goo(22)/ Goo(zl)]l/2
For the limiting case of a weak field
Goo=—1-2¢n +e0o(z) +35(2) 80, (2) +3850(2)
|onl, e« 1
so that v,/ v, =1+Av/v, where
Av/v={(Av/v); = ¢n(z2) —dn(z1)
+idn(z2) = dn (20— [N (22) = dN(2)]
"lDoooo(O)[_l =3¢n(2) T TN (21)]
4D6o,(0)[@n(z1) — PN (22)]

“‘ZDoo,oo(Zl_Zz)[l“¢N(22)"3¢N(Z1)]

From this, we see that even in the absence of the gravitational field there
exists a contribution to the red-shift value due to the stochastic fluctuation
of the space-time metric; that is,

(Av/¥)gi0ch = %Doo,oo(o) - %DOO,OO(Zl —1,)
coinciding with formula (1.36).

3. TENSOR ANALYSIS IN SPACE-TIME
WITH STOCHASTIC METRIC

3.1. Reformulation of the General Covariance Principle in the Presence of
the Stochastic Metric

As is shown above, due to the stochastic or fluctuational character of
space-time, the equivalence principle between gravity and inertia is achieved
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up to the order of the value I3,/ or If/1*, depending on the form of the
distribution for the gravitonlike particle covariance. In the previous sections
we applied the modified (or generalized) equivalence principle in order to
introduce the gravitational effect into physical systems in the case of space-
time with a stochastic metric. Following this, we also wrote equations in a
virtual “quasilocal” inertial system of coordinates [i.e., equations of the
special theory of relativity such that d°x*/dr* = (1/ m) F* with the stochastic
metric gﬁfﬁ(x)] and carried out a transformation of the coordinates x*=z"
in order to find corresponding equations in the laboratory system of coordin-
ates with a stochastic metric. In principle, one can use this method further;
but it leads us to very tedious calculations when we arrive at the definition
of field equations in electrodynamics and gravity.

Following Weinberg (1972), we here employ another method which
has the same physical content, but is more elegant in its notation and more
convenient to handle. This apparoach is based on the extended version of
the equivalence principle known as the principle of general covariance. It
asserts that a physical equation is given in an arbitrary gravitational field
in the case where the following two conditions are fulfilled:

1. The equation is given in the absence of gravity, i.e., it corresponds
to the laws of the special theory of relativity (in our case it is slightly
modified according to Section 1) when its metric tensor G,,, is equal to the
stochastic metric g’} and the affine connection I'},(z) coincides with v, (x).

2. The equation is generally covariant, i.e., it preserves its form under
an arbitrary transformation of coordinates z” > z'”.

As in the usual theory of gravity, in our case the general covariance
principle follows from the equivalence principle. When we obtain the general
covariance equation, new quantities, the metric tensor G,, and the affine
connection Ff‘“,, enter in. In this case, one does not need to assume that
these quantities disappear totally, and that therefore any restriction on the
original equation has arisen. On the contrary, we utilize the existence of
G,, and I'},, in order to introduce gravitational fields.

The modified general covariance principle is used only on small scales
with respect to a typical space-time size for gravitational field, since only
in small domains is one guided by the equivalence principle and able to
find a system of coordinates in which pure gravitational effects are absent.

3.2. Vectors and Tensors

To construct invariant physical equations with respect to the transfor-
mation of coordinates in a space-time with a stochastic metric, we must
know how quantities standing in equations under this transformation
behave. We start from simple physical quantities such as vectors and tensors.
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By definition, as in the usual case, under the change of variables z* - z’*
contra- and covariant vectors V* and U, transform by the formulas

k) i 3 v
. u=2Zy, (3.1)
0z

®oogz

Vly. — VV

respectively. For example, the rule of taking the partial derivative gives

T

dz'" = dz’
0

so that the differential of coordinates is a covariant vector. If ¢ is a scalar
field, then 3¢ /0z" is a covariant vector, since

3¢ dz" 9
az'* 9z 5z”

By this general rule of transformation of any physical quantity under
the passage from one system of reference to another, one can easily define
its value in an arbitrary system of coordinates. For example, we now define
force F* in the system of references z* by knowing its value f* in the local
inertial system of coordinates £”. Thus, there are three systems of reference
at our disposal:

(a) The local inertial system of reference £” with the Minkowski
metric 7,4.

(b) The “quasilocal” inertial system of reference x” with the stochastic
metric

g(x) = My + £, (X) +4E5(X) 8,0 (X)

(c) The general system of reference z* with the stochastic modified
metric G,,.
Then, the contravariant vector F% is defined by the cyclic transformations
az" az* ax”

F¥(x)=
ax” (x) ax” 3&®

fe (3.2)

&(z)=

Since the transformation matrix x”/9¢” is given by formula (1.12), we have

azk , , .
F§(z) =8xV [62 —%sa(x)—’f—%gﬁ(x)gp(x)_. f
GZ"" v 82“ o v v
=— [+ f[—3ea(x) +ieh(x) e (x) - - ']
9z ax

In the absence of gravity, 9z*/9x” = 8%; therefore, expression (3.2) gives
the previous result for the modified special theory of relativity with a
stochastic metric (Section 1).
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From contra- and covariant vectors one can immediately turn to high-
rank tensors. For example, if T%" is a tensor of the type of U, V*W?, then
its transformation is given by
82" oz'* az

z” 9z* 9z°

T(2) =

T;%(z)

A more important tensor is the metric tensor defined by the formula

ag agﬂ

Y ax*H

g,uu(x) naB
in an arbitrary chosen system of reference x*. In the general system of
reference when there exists a gravitational field, the metric tensor reads
08 98" _ 08" 98° ox” ox
9z 62" "B 3x” ax® 9z* az"

G..(2)=Map

and therefore,

s ax’ ax
G, (2)=gi(x X) 5

from which we see that G,,(z) is indeed the covariant tensor. An inverse
tensor with respect to G, ,(z) is given by the relations

G*(2)G,,(z) = G,,(2) G™(z) = 8% (3.3)
Then

az az* az* 9z ax™ ax"

SXGVZ___ %
axpa crg()( ) I-'-() ax paxa'g(s) azvg'q

n
az X" (5
axp g(S)

az ax A
8x" z”

and therefore, the construction

BZ az"

ax? ax” S0 G (34

is just the contravariant tensor.

In accordance with the definition (2.8) in space-time with a stochastic
metric the Kronecker symbol §;, is a mixed tensor of the type T, = U, V",
since

az® ax¥ 3z gx*
8, — o= =80 (3.5)
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In addition to a scalar and zero, the Kronecker symbol 8% (at the same
time its direct products) is the unique tensor whose components are the
same in any system of reference.

3.3. Tensor Algebra

As usual, in order to construct tensor equations which are invariant
under arbitrary transformations of coordinates, one has to know how new
tensors are formed from others. This is achieved by means of some simple
algebraic operations:

1. Summation. The sum of tensors with the same upper and lower
indices is a tensor with the same indices. Let A% and B! be two mixed
tensors. Let us consider their sum T% = aA% + bB% for any scalar constants
a and b. Then, T% is a tensor, since

oz'* 9z% 9z 9z%
T)=aAV+bB)=a— — Ab+b—Fr— B}
az" 9z 8z” oz
=az *az%
az” 9z’ ¢

2. Direct Product. The product of components of two vectors leads to
a tensor, the upper and lower indices of which consist of all upper and
lower indices of the two initial ones. For example, if A% and B” are tensors,
the combination T%” is also a tensor, i.e.,

9z'* 9z* 9z

" B°
ozt 9z’ ¥ az°

TP — ATHRIP
T'* = A'* B =

_9z'" 9z" 9z
9z* 92" 9z% "

o

3. Contraction. Equating the upper and lower indices and summation
over their four-values gives a new tensor in which these two indices are
absent. For example, if T%° is a tensor from which one can form a new
quantity T#* = T%*”, then T** is also a tensor, since

T'HP = T;,WJV ———— — ;‘"T
9z'* 3z'*

oz'* 3z'f
= —_— TX
9z* 9z”

9z” 3z™

A _
A=

n

The above-mentioned three operations may always be united in a different
way. The most important combined operation leads to lowering and raising
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the indices, which is achieved by means of the stochastic metric tensor G,,..
For instance, let T4 and 5%, be tensors; then the new formations
54.=G,TE and RY=G*"S%,

are also tensors in accordance with rules 2 and 3. Owing to relations (3.3),
the raising and lowering of both the indices for the metric tensor G, are
carried out by the following rules:

G*G*G,,=G"G,,G” = G*§, =G
and

G,..G”G,,= G, G,.G™=G,,0,=G,,

This rule of lowering and raising the indices for G,,, again gives the metric
tensor and its inverse, respectively.

3.4. Tensor Density

An important example of nontensor values is the determinant of the
metric tensor

G =-Det G,,(z)

The rule of metric tensor transformation may be regarded as the matrix

equation
az* 9z°
oz'* 7oz

LA—
G, =

Calculating its determinant, we have
G'=|oz/0z*G (3.6)

where |9z/92'| is the Jacobian of the transformation z'* - z*, i.e., the deter-
minant of the matrix z7/3z'*. As in the usual case, if we do not take into
account an additional multiplier caused by the Jacobian, we call a quantity
of the type of G a scalar density in the general system of reference z* with
the stochastic metric G,,,. Similarly, a value that transforms as a tensor but
with additional multipliers from the Jacobian is called a tensor density. We
call the number of factors |9z’/dz| in the determinant the weight of the
density. For example, from expression (3.6) it follows that G is a density
with weight —2, since

loz/9z'| =l|az'/az| ™
The latter is easily verified by estimating the determinant of the equation
9z 9z

—_— I
9z 3z”

v
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Any tensor density with weight w can be expressed as a usual tensor
multiplied by the coefficient G™"/?. For example, the tensor density F*
with weight w transforms by the rule

Fre az'|" 9z 92" _,
¥ ezl ezt ezt "
Using (3.6), we find
G/w/2Fm=azm 9z” GW/ZF)\
Y3zt 9z *

An important role of tensor densities is defined by the fundamental
theorem of integral calculus, which asserts that under an arbitrary transforma-
tion of coordinates z” > z'” the volume element d*z is replaced by

d*z'=|dz'/dz| d*z 3.7)

Therefore the product of d*z on the tensor density with the weight —1
transforms as a usual tensor. In particular, G'/*d*z is an invariant element
of the volume.

There exists an important tensor density, the components of which are
the same in all systems of coordinates; that is the Levi- Civita tensor density,

+1 for even rearrangment of indices
"™ ={—1 for odd rearrangement of indices

0 if any pairs of indices coincide

VA

This quantity is the tensor density with weight —1. Multiplying & on
G~V one can construct the usual contravariant tensor. Moreover, it is
possible to form the covariant density by means of lowering its indices:

— VA
Epone = Gpu GUVGVM Gfxs

This expression is antisymmetric over indices, and therefore, it is propor-
tional to £°°7; the coefficient of proportionality is —G, so that

¢ — G

pong T

One can easily verify that ¢, is the covariant tensor density with weight —1.
Finally, we present a calculation method for the determinant of the
metric tensor. Let the stochastic metric G,, be a tensor of the type

Guv = Mt £, (%) H3E0(x)£,,(x)
Then, by definition,
G=-Det G,,=Det(1-A)=][(1-4;) (3.8)
j
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where numbers ), are eigenvalues of the matrix A, = ¢, (x) +5&%(x)e,,(x).
After a simple transformation, expression (3.8) reads

jn

G=exp|:z ln(l—)tj)] =exp[—z i %/\J":I
-]
=exp| — Y —TrA

n=1 R

* 1
=exp[—5Tr "] exp[— Y —TrA"]

n=2 N
=exp[-iTre?—iTrA2Z=3Tr A’ = -] . (3.9)
Thus,
G’ =1-3Tre” -3 Tre’+O(&’)
and

InVG=—§Tre?—1Tré’
where we have used the definitions
Tr & =Tr e5(x)€,,(x) = e5(x)€,,(x)
Tre?=Tre,,(x)e,n(x)

It should be noted that the rules of the tensor algebra are easily extended
to the case of tensor densities:

1. The sum of two tensor densities with the same weight w is a tensor
density with weight w.

2. The direct product of two tensor densities with corresponding
weights w, and w, gives a tensor density with the weight w,+w,.

3. The contraction of indices for a tensor density with the weight w
leads to a tensor density with same weight w. From rules 2 and 3 it follows
that lowering and raising the indices does not change the weight of the
tensor density.

3.5. Transformation of the Affine Connection in Space-Time with
Stochastic Metric

It is well known that apart from trivial tensor quantities and densities
in physical laws, nontensor values may appear, among which the affine
connection plays an important role in the gravitational theory. In space-time
with a stochastic metric the affine connection has the same form as in the
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usual theory, and therefore, we follow the standard method for transforma-
tion of the affine connection. Now we separate its nonhomogeneous non-
tensor term. By definition,
F/\ _ aZ/\ achy
BV 9E% 92" 9z”

where £% is the local inertial system of coordinates. In another system of
coordinates z'” the value of I‘f‘w acquires the form

N =aZ/A 82fa
BY0E% 9z 8z
_ 9z 9z 9 (az" g_gj)
9z” 9&” 3z \9z'" 9z”
9z 9z° (az" 9z7  3&° ¥z7 a_g“)
0z° 9£%\8z"" 9z'* 9z7 3z° 9z 8z" 9z°

Taking into account definition (2.7), we find
1A T o 1A 2_o
o _0z% 927 827 92" 3%z
B azf 9z’ 9z 8z7 az'* 3z'"

(3.10)

TG

Here the last term makes I}, the exact nontensor value.
Tensor analysis permits us to establish a simple connection between
I, and G,,. Notice that

I _L< 92" az“)

az™ * 9z \ Tez'* gz’ 8z7 3z’ 9z'* 9z
PSR i Lk o’z oz”

Tz 9z’ gz P79z 92" 3z

and therefore,

d
7 G;V + 124
az'* 9z

9 o _ 9o _3z7 9z° 8z° (aGeraGm_@Gpa)
gz’ 9z™ 9z'"* 3z’ \ 9z°  9z° 9z”

ny

8’z°  9z°
+2G,,———
P78z’ 9z 3z’

From which it follows that

' 23 T o 1A 2. p
a
{)\} _3z" oz oz {p}+ A & (3.11)

ny az" az'" 3z’ 7o) 9z° 9z 9z
where
A 0G,, 0G,, 0G,,
{ }E;GM[ ) 00 :] (3.12)
uv 0z oz 0z
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Subtracting (3.11) from (3.10), we see that quantity '}, —{,%} is a tensor,

since
AV 9z az” 8z° 0
I =— r:’a—{ }] 3.13
l: # {p,v}:, 9z° az'* az"’[ o ( )

The modified equivalence principle of the second level tells us that there
exists a quasilocal-inertial system of reference in which effects of external
gravitational fields are absent. According to the correspondence principle
employing the equivalence principle of the first level, in this system of
reference when an external gravitational field disappears, the affine connec-
tion I‘;‘W and the stochastic metric G,, coincide with 'yfw and g(jﬁ, respec-
tively. Since by definition (2.24) in this system of reference the expression

(2]l

becomes zero and at the same time is a tensor value, so that it should
disappear in any arbitrary chosen system of reference, and therefore,

A _ L}
F’”_{MV

Now we give another expression for the nonhomogeneous term in the
transformation rule of I'},, . Differentiate the identity

9z’ 9z°
az" 3z'"

v

with respect to z'*, from which it follows immediately that

9z 82" 9z 9z 8" (3.14)
8z° 8z'" az'™ 92" 8z'* 82° 9z° '
Therefore, expression (3.10) may be written as
9z 3z" 8z° 9z° 9z° 2"
s - (3.15)

Y 3zP 9z'" 92" T8z 97" 92° 92°

This is just the expression which would be obtained by carrying out the
inverse transformation z'=>z” and solving the obtained equality with
respect to T'/),,.

Now we are able to use the general covariance principle in order to
prove that an “almost freely” falling particle satisfies the following equation
of motion:

d’z* dz” dz*

_+1"l‘- —_
dr? n(z) dr dr

=0 (3.16)
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where the proper time dr° is given by formula (2.11). First notice that
equations (3.16) and (2.11) are valid in the absence of gravity, since

[i(z) = yia(x) and (Z)=>g(S)( )
(3.17)
d>x* dx® dx*
+ oyt ==
dr? dr dr

But this coincides with the equations that describe a “free” particle in the
special theory of relativity modified in accordance with our assumption.
Further, notice that (3.16) and (2.11) are invariant under an arbitrary
transformation of coordinates, since

d22'”__gl_(az'“ dz”) 9z d’z7 3%z dz* dz”
dr*  dr\9z" dr §z° dr*  9z" 9z* dr dr

whereas relation (3.15) leads to
L2 d gz dit d
7 dr dr  9z' M dr dr
3z dz dz
T9z% 9z dr dr

Adding these two equations, we find that the left part of equation (3.16) is
a vector, i.e.,

d2 14 /v d 2.3 9 17 d2 8 d d
z z ( z z) (3.18)

/u. = &

7 N T T \Nar T ar
Thus, equations (3.16) and (2.11) turn out to be exactly covariant in
space-time with the stochastic metric G,,,. The general covariance principle
of the second level tells us that relations (3.16) and (2.11) are valid in
arbitrary gravitational fields, since they are indeed satisfied in quasilocal
inertial system of references. Moreover, we recall the analogous situation
which asserts that relations are valid in all systems of reference (including
those with stochastic metric) if they are valid in any system.

3.6. Covariant Differentiation

As in the usual theory of tensor analysis, we can easily generalize the
definition of covariant differentiation in space-time with a stochastic metric.
Generally speaking, differentiation of a tensor does not lead to a new tensor.
Now we turn to the definition of covariant differentiation by using the affine
connection I'},. In this connection it should be noted that, using 'yfw for
an additional fictitious ‘gravitational” field, one may also formulate



636 Namsrai

covariant differentiation with respect to variables x” with stochastic metric
g's). Thus, consider the contravariant vector V*, the transformation rule of
which is

az'*

VI[J. — - VV
9z

Differentiation of this equality with respect to z'* gives
av™ 3z’ 9z" avV®  3*z'™ 9z”

8z’ az” 9zt 9z° 9z’ 9z° 9z

|4 (3.19)

The first term on the right-hand side of this equation coincides with what
would have arisen if the expression 6 V*/3z" were a tensor, but the second
term breaks the tensor character 8V'“/3z"*. Although aV*/az* is not a
tensor, by means of it one can construct a tensor. Using equation (3.15),
we find

[ V,xz(az"‘ 9z° 927 .,  ¥z™ 9z° az"> 9z Ve
A az" 9z a9z "7 9z° 9z 9z 3z’ ) 9z°
8z"™ 9z° &Fz'*  4z°
= v A ;C" V‘T - o4 A VU (3'20)
az" 9z 9z” 8z7 oz

Adding (3.19) to (3.20), we see that nonhomogeneous terms cancel each
other and the result reads

av'* . 0z 9z° (3V”
1A +F;\l:¢ V = v A ( P
z az" oz 0z

+T7%, v5> (3.21)

Thus, we arrive at the definition of the covariant derivative in space-time
with a stochastic metric

L

3V
V=t Ve (3.22)

Z/\

and equation (3.21) tells us that V¥ is a tensor, since

oz 9z” _
e (3.23)

We can also define the covariant derivative of a covariant vector U,,.
Recall the rule of transformation

7
A

azf
l]/ .._l]
BT g P

Differentiating this relation with respect to z'*, we get
aU, oz° 9z” 3U, &'z’

i S R ) 3.24
ale azlp. aZlV aztr aZI[.L az/u P ( )
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Further, from (3.10) it follows that

r“\ U;‘:(az.')\ azp aza' . +azn\ a221- )(92"
By 8z" 3z™ 9z~ "7 3z" 9z™ 9z’ ) 9zt T
8z° 8z°% _, 3z
=" 927 T”“U”+waz'“ o Ur (3.25)

By subtracting (3.25) from (3.24), the nonhomogeneous terms cancel and
we obtain
ol

B TA !
v F/J.VU/\"'

0z

8z 9z (aU, )
= — -1, U, .26
9z’ 9z (az” b U (3.26)

Thus, we are able to introduce a definition of the covariant derivative of
the covariant vector

oU,
o~ T Us (3.27)

U,,=
# 0z

and expression (3.26) tells us that U, is a tensor, since
9z° 8z°

' —

,U-;V—azrp. 52" pio

Extension of the given method to the case of a general form of tensors
encounters no difficulty. For example, let T{” be a tensor of the type
V*W7U,; then its covariant derivative is given by the standard version:

T+ T 13, T (3.28)

T4, = é—i—" T4 +T%,
where I'%, is constructed by means of the stochastic metric G,,, and it is
easy to verify that expression (3.28) is indeed a tensor. Moreover, combina-
tion of covariant differentiation with the algebraic operations defined in
Section 3.3 leads to the analogous rule of the usual differentiation [for
details, see Weinberg (1972)].

Notice that the covariant derivative of the stochastic metric tensor is
equal to zero for any system of reference. Indeed, by using a definition of
the type (3.28), we get

aG,,
G = —2_T% .G, -T%,G

nos A Ap v ~pu
0z

Further, from equation (2.19) it follows that this quantity disappears:
G,u.V;/\ = O
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in space-time with a stochastic metric. In accordance with our construction
(Section 1), it turns out also to be zero in the quasilocal inertial system of
reference, when I'},, = v%, and G,, = g%’} and the tensor is equal to zero
in one system of reference; it also becomes zero in all systems of reference,

including those with a stochastic metric.

3.7. Covariant Differentiation along the Curve

Up to now we have considered tensor fields defined on the whole of
space-time. Here we consider a tensor T(r) given along the curve Z” (7).
Such types of tensors are the momentum P*(r) and the spin S,(7) of an
individual particle. Of course, for such tensors it is not possible to talk
about covariant differentiation over z”, but we can define the covariant
derivative over the invariant quantity 7 by means of which the curve is
parametrized.

Let us consider the contravariant vector A”(r) transforming by the rule

97" av(r) (3.29)

A(r) ="

where the partial derivative 9z'%/9z" is calculated at Z" = Z”(7), so that it
depends on . Differentiating (3.29) over 7, we obtain two terms
dA™(1) 9z dA”(7) +r_12_" &z
dr  dz¥  dr dr 9z” 92"

A% (7) (3.30)

The second derivatives 8°z"*/3z” 3z* are similar to the term that breaks the
homogeneity of the transformation rule (3.15) for the affine connection, so
that we can define the covariant derivative along the curve Z”(7) as follows:
DA* dA* dz*
+T4 — A" 3.31

Dr dr *dr ( )
Then expressions (3.15), (3.29), and (3.30) show that this quantity is a
vector, since

DA™ 4z DA”
Dr 9z Dr

(3.32)

The similarity of formulas (3.31) and (3.22) for the covariant derivative of
the vector field is obvious.

Analogous considerations allow us to introduce the covariant derivative
along curve Z*(r) for the covariant vector U,(7):

DU, _du, |, &
Dr  dr Y dr

U, (3.33)
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Expression (3.10) permits us to verify easily that the obtained value is
indeed a vector,

DU, sz" DU,

.34
Dr 9z’ Dr (3.34)

Notice that all properties of the covariant differentiation expounded
in Section 3.6 can be easily extended to the case of differentiation along
the curve. One can consider the case when the vector A*(7) transferring
along the curve (trajectory) of the particle does not change with the “time”
variable 7 if the particle is considered within the system of reference x”(7),
i.e., in the quasilocal inertial system of reference with stochastic metric gffp)
As seen in Section 1, in this system of reference x”

DA*
Dr

0

This assertion is valid in all systems of references in accordance with the
covariant character of differentiation along the curve x”(7). Then the vector
A" satisfies the first-order differential equation

— =T —A" (3.35)

which defines vectors A* for all 7 if A* is defined at some initial value
of 7. In this case, it says that vector A*(7) on the curve x”(7) is defined by
means of parallel translation. Thus, one can define any tensor on the
curve x”(7), provided that its covariant derivative along this curve has
disappeared.

3.8. Gradient, Curl, and Divergence in Space-Time with Stochastic Metric

Here we consider some consequences of the definition of covariant
differentiation in space-time with a stochastic metric. In this case, no
essential difference in the calculation of gradient, curl, and divergence
appears with respect to the usual theory of the tensor analysis. There exist
particular cases when the covariant derivative has a very simple form. For
example, the covariant derivative of a scalar quantity coincides with the
usual gradient:

T, =0T/az" (3.36)

Another simple particular case is the covariant curl Recalling the
definition

U,.,=0dU,/9z" -T},U,
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and taking into account the fact that I'}, is symmetric over indices u and
v, one can easily see that the covariant curl coincides with the usual one,

U,.-U,.,=dU,/oz"-3U,[/6z" (3.37)

“w
For completeness, we consider the covariant divergence of the contra-
variant vector

Vi =9V¥/oz*+Th, V* (3.38)
Notice that

%, =1G* (aG"""FaG"A'aGM) _1Gue 3G

.39
azt 9zt 9zf az* (3.39)

This is easy to calculate if we use the definition
] d
Tr{M’l(z)——-;M(z)} =—=1n Det M(z) (3.40)
0z 9z .

for an arbitrary matrix M, where by Det we take the determinant and by
Tr we take the trace, i.e., the sum of diagonal elements. Following Weinberg
(1972), to prove (3.40), consider the variation of Det M with respect to the
displacement of coordinates z* by the value 8z*:

5 In Det M = In Det(M + 8M) —In Det M
=In[Det(M + 6M)/Det M]
—1n Det M~ (M + 8M)
=InDet[1+ M~ 5M]
=In[1+TrM '6M]->Tr M~ 6M

Insering the coefficient 8z* into both sides of this expression, we see that
the relation (3.40) holds. Making use of (3.40) for the case when the matrix
M is equal to G,, and taking into account (3.39), we find

v=53In G/az* =GV 3(G)"*/az* (3.41)
From (3.38) it follows that the covariant derivative is
Ve =G 8(GYPV*)/az* (3.42)

a direct consequence of which is the covariant form of Gauss theorem: if
V* becomes zero at infinity, then

Jd“z G'"?vE =0 (3.43)

Notice that due to the appearance of the coefficient G/ in (3.43), the
volume element d*z(G)"/? is invariant.
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One can also use (3.41) for the simplification of a formula for the
covariant derivative of a tensor quantity. For example, by definition,

T =T /3z*+T 4, T +T,,, T*
and using (3.41), we find

T =G V2 9(G"*T*)/az* + T}, T* (3.44)
In the particular case 7" =—T"* the last term disappears, and therefore,
A =GV 9(GVPA*) 9z (3.45)
where A*” is an antisymmetric tensor. Moreover, the important formula
0A,, 0A,. 04,
AMVQ/\+A/\M;P+AW\§P-= GZ‘: + 8ZVM+ Py (3.46)

may be obtained for the covariant differentiation of the antisymmetric
covariant tensor A,, = —A,, in space-time with a stochastic metric.

4. INFLUENCE OF GRAVITY WITH STOCHASTIC METRIC
ON PHYSICAL PROCESSES

In previous sections we presented a concrete method of introducing
fictitious (or background radiation) and true gravitational fields into physical
systems from the point of view of a stochastic metric. Here, we study the
influence of both these fields on the physical processes and explain their
general and specific properties in the framework of the general covariance
principle. To obtain equations of mechanics and electrodynamics in the
presence of arbitrary gravitational fields, we must first write these equations
in the special theory of relativity, and then explain how any quantity entering
into these equations is changed under arbitrary transformations of coordin-
ates, and replace:

(a) m.,~ gﬁf,f for a background radiation field ¢,,(x)

(b) gﬁfﬁ - G,, foran external gravitational field with stochastic metric

and all derivatives by covariant ones.
For example, for a vector field A", the corresponding formulas take
the form

dA* DWA* dA* | dx*

Ry

R S e R L
for the background radiation field &,,(x); and
dA* DA dA* e

(d) _dAT o 92

d7:>DT_dT B dr

for an arbitrary gravitational field with stochastic metric.
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Equations obtained in this way will be generally covariant and justified
in the absence of gravity, and therefore they are valid in arbitrary gravita-
tional fields provided that the given system is sufficiently small with respect
to the scales of the fields.

4.1. Mechanics of a Particle

Let us consider 2 mechanical system in the special theory of relativity.
When external fields are absent, a particle possesses permanent four-velocity
U® and constant spin value S,, i.e., in the inertial system of reference &*

dU%/dr=0 (U*=dg%) dr) (4.1)
dS./dr=0,  dr’=—n,,dE" deP (4.2)
Recall that spin S, is defined in the rest system of the particle, where its

value is S, = {S, 0}, so that in an arbitrary Lorentz system of reference the
condition

S, U*=0 (4.3)

is fulfilled.

Further, according to the prescriptions of the modified general covari-
ance principle, we must write these equations in an arbitrarily chosen system
of reference z* by means of covariant derivatives DU*/Dr and DS,/ Dr,
which become the usual ones when I'%, =0. Thus, the correct equations
giving the position and spin of the particle in an arbitrary system of reference
z” are

DU*/Dr=0, DS,/Dr=0 (4.4)
or, in more detailed form,

dU*/dr+T4H U U =0

(4.5)
ds,/dr—T,U"S, =0
Moreover, equality (4.3) should be written as
S, U*=0 (4.6)
In expressions (4.5) and (4.6) the vectors U* and S, are given by
U= (3z*/9£*) U =0z*/a1
(4.7)

S.=(3¢"/9z")Sy,

where Uy and S, are the components of U* and S, in the freely falling
coordinate system £°. In particular, in the presence of a fictitious radiation
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stochastic field ¢,,(x) only, equations (4.5) and definitions (4.7) take the
form

du”/dr+ yhu"u* =0

4.8
ds,/dr— v, u"s,=0 (4.8)

and
u*=(3x*/3£") Uy, 5, = (3€%/3x")Sp, (4.9)

Here the Jacobian of transformations 3&%/ax*, dx”/a£“, and the “affine”
connection y%, are given by formulas (1.10), (1.12), and (1.6a) [or (1.6b)],
respectively. In Section 1 we considered some consequences of the first
equation in (4.8). Notice that according to the general covariance principle
discussed in Section 3.1, equations (4.5) are valid in the presence of gravita-
tional fields, since they are general covariants and are valid in the absence
of gravity, i.e., equations (4.5) become equations (4.1) and (4.2) when '},
disappears. Thus, we see that in space-time with a stochastic metric, the
equation of motion and spin of the particle are determined by the same
form of equations as in the usual theory of gravity.

When an external force exists, then the covariant differentiation
DU’/ Dr is not equal to zero, and instead of the first equation in (4.5) it
is necessary to write

DU*/Dr=(1/m)f" (4.10)
where m is the mass of the particle and f* is a contravariant vector of force
which may be written in an arbitrarily chosen system of reference z*:

£ =(dz*13€")f7
by using its value f7 in the freely falling system of reference £° One. can
write equation (4.10) in the usual form
md?*z*/dr? = f*— mI*(dz”/dr)(dz"/ dr) (4.11)

The term containing I'%, plays a gauge potential role in the presence of the
stochastic metric G,,(z).

it should be noted that, in accordance with the correspondence
principie, when an external gravitational force disappears, then equation
(4.11) becomes

m d’x*/dr* = F* — my% (dx"/ dr)(dx"/ dr) (4.12)
for the gravitational vacuumlike fictitious radiation field ¢,,(x), where
Fr(x)=(ax"/3€")fF (4.13)

is an external force of nongravitational origin. For the cases of (4.12) and
(4.13), the stochastic metric is given by the formula (1.11).
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4.2. Electrodynamics in Space-Time with Stochastic Metric

Recall that in the absence of gravitational and background additional
fictitious fields Maxwell’s equations in electrodynamics transcribe as

gFf g =~ P (4.14)
0F5, /08 +0F,/0&® +0F,5/06" =0 (4.15)

where J* is the four-vector {J, 5} and F** is the tensor of the electromagnetic
Jield defined by the formula -

0 -E, -E, -E

E, 0 B, -B,

E, -B, 0o B

E, B, -B, 0

Fof =

Assume that we define F*” and J* in arbitrary coordinates, providing that
they lead to F°® and J* in the local-inertial system of coordinates, and
behave as tensors under arbitrary transformations of coordinates, i.c., if
Fef and J* are quantities measured in the local-inertial system of reference
£°, then the relations
I v "

=02 %2 pas and =2 je

9¢” a¢ 4
are valid in any system of reference z”. Thus, one can change equations
(4.14) and (4.15) into the general covariance form by replacing all derivatives
by covariant ones:

my

F&=—J" (4.16)
FotF,, ,tF, 0 (4.17)

HO

Now indices should rise and fall by means of G,,, but not 7,4, i.e.,
F)\x = G)\,u,GxVF”V (4.18)

where G,,, is the stochastic metric given by expressions (2.12) and (2.13).
As in the usual theory, in our case electromagnetic stresses F*” and F,,, in
gravitational fields are antisymmetric and therefore, by using formulas (3.45)
and (3.46), we can write the Maxwell equations in the form

G F* [9z" =—VG J” (4.19)
dF,,/8z"+dF,,/8z" +3F,,/3z"=0 (4.20)

Equations (4.16) and (4.17) are valid in the absence of gravity and are
generally covariant. Therefore, according to the general covariance prin-
ciple, they are valid in arbitrary gravitational fields.
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Now we define an electromagnetic force acting on a particle with the
charge e. In the absence of gravity it has the usual form

f§ = eF3(dg? ) dr) (4.21)

from which it follows immediately that in an arbitrarily chosen system of
coordinates the electromagnetic force in any gravitational field is

f¥=eFi(dz"/dr) (4.22)
where
Ft= G, F* (4.23)

It is easy to see that formula (4.22) is written in the right form, since,
according to the general covariance principle, equation (4.22) is reduced
to (4.21) in the local-inertial system of Minkowski coordinates and is the
general covariant. Moreover, f* and dz”/dr are vectors and F% is defined
as a tensor.

As a calculation example, we write Maxwell’s equations in a given
constant fictitious “‘gravitational” field ¢,,,(x) in the three-dimensional form.
For this, let us introduce the three-dimensional vectors E and B connected
with components of the covariant tensor F,, in the same form as in
Minkowski coordinates £”:

F,=8B, F13=—By: F,;=B,
Fio=E,, F20=Ey5 Fy=E,

where we have used the simple connections F*°= Fy, and F* =—F,, (i=
1,2, 3) between components of co- and contravariant tensors. Analogously,
we link components (—g&y)"/?F* with the components of vectors which
we denote by D and H. By simple algebraic transformations one can then
represent the connection F*” =g g’ F,, in the form of two vector

relations:
D=h""?E+[Hxg], B=h"’H+[gxE] (4.24)

With these definitions the four-equations {4.19) and (4.20) can be written
in the form of three-dimensional equations

rot E=—(1/c) 6B/ 4t, divD=0
rot H=(1/c) aD/3t, divB=0

in which vector operations are performed in the three-dimensional space
with metric vy, given by (1.34). In expression (4.24) we have used the
following notations:

h=-gly and g=g'=-gb/gw
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An averaging procedure for these quantities was given in Section 1.4, from
which it is easily seen that (g) =0. Thus, in the whole space-time obtained
by using the averaging procedure over one with stochastic metric g'’), there
does not exist an isolated direction connected with the “arrow” of the vector
g, i.e., all its arrows have equal rights.

Now we calculate the current vector J* in space-time with the stochastic
metric G,,,. In the special theory of relativity it has the standard form

ja =Z €, J‘ 6(4)(§-§n) df‘,: (425)

where integration is carried out along the trajectory of the nth particle. In
an arbitrary system of coordinates, the four-dimensional 8-function is intro-
duced in the following manner:

J d*z¢(z) 8P (z—z,) = ¢(z,)

Since G'/*d*z is scalar, then the combination G™"/?8®(z - z,) should also
be scalar, which is reduced to the usual §-function within the special theory
of relativity, where G =1. Thus, the covariant vector which becomes j* in
the absence of gravity is

J*2)=G V¥ 2)Y e, I 8W(z—-1z,) dz* (4.26)

Let us calculate its average value in the fictitious “gravitational” field ¢, (x).
In this case, in (4.26) it should be replaced by G,, ~> gffﬁ(x), the latter is
given by (1.11). Thus, (4.26) takes the form

JH(x)=g""*(x)Y e, J' 8 (x —x,) dx* (4.27)

To average this expression, consider the following chain identities:
I=g7"¥x) dx*=g V*(x) dr(dx"/dr)=g "/ dr U
=g™'? dr(ax"/8¢")u;

where u}, is the velocity of the nth particle in the local-inertial system of
reference. Further, making use of definitions (1.12), (1.28), and (3.9) in the
weak-field limit, we obtain

(Iy, = dr{{[ 8%+ 84 E*(x) —3ek(x,) + 2e (%) e (x,)]
X[AYV2 =LA (g,5(x,) + 1e5(x,) €5, (X)) U5 uLS
—3AT 8,5 (X, ) e, (X ufudubul 1D (4.28)
where

E*(x)=3Tre”+1Tr e’ =gef(x)e,,(x)+1e,,(x)e,,.(x)
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The averaging procedure in (4.28) is easily carried out by using the definition
of taking the trace of the matrix s,,(x) and its covariance (correlation
function). For example, in the pseudo-Euclidean case (1.30) and the
Euclidean case (1.77), the quantities

(Tre?),=D%,.(0) and (Tre?),=D,,,.(0)

1Pt
acquire the forms
(Tre?),=5D(0),  (Tre?), =4D(0)
and
(Tre®, =10D(0),  (Tr &%, =10D(0)
respectively. Here the function D(0) is defined by (1.31). The result reads
I, = { dxh[1 +§I§(O)] for the pseufio-Euclidea.n covariance
dxt[1+5D(0)] for the Euclidean covariance

and therefore, the corresponding averaged electromagnetic current (4.27) is
given by the simple formula

[1+3D(0)]
[1+%D(0)]
where j*(x) is the electromagnetic current in the special theory of relativity.

Expression (4.29) may be understood as a change of the charge value of
the nth particle:

e, = e, =e,[1+3D(0)] or e, =e,[1+ZD(0)] (4.30)

JH(x)=j"(x) X{ (4.29)

depending on taking a concrete form for the Euclidean (or pseudo-
Euclidean) covariance of the stochastic field ,,(x).

Thus, we see that in the fictitious “gravitational” background field
¢,.(x), along with the value of the particle mass (see Section 1.4) its electric
charge also undergoes a slight change.

Finally, notice that the conservation law 3j/3¢™ =0 of the special
theory of relativity in the scheme with a stochastic metric has the form
J4, =0, or, in accordance with (3.42),

(G2 I*) /92" =0 (4.31)
The multiplier G™"/? in (4.26) is to compensate for the G'? in (4.31), so
that (4.31) expresses the constancy of the electric charge e,.
4.3. The Energy-Momentum Tensor

In space-time with a stochastic metric the construction of the energy-
momentum tensor is not difficult. It is achieved by using the standard method
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of the general theory of relativity. As usual, density and energy-momentum
flow are combined in the symmetric tensor ¢** satisfying the conservation
law
ot® /o™ = g# (4.32)
where g® is the density of the external force f* acting on our system. In
an isolated system g® = 0. Let us define T7#* and Q* as contravariant tensors
which coincide with the corresponding quantities t** and ¢” in the absence
of gravity with a stochastic metric G,,,. Then the general covariant equation
coordinated with (4.32) in the case of the local-inertial system of reference
has the form
T4 = Q" (4.33)
or, in, accordance with (3.44),
G2 o(GPT*) )9z = Q" =T}, T** (4.34)
The second term in the right-hand side of (4.34) represents the density of
the gravitational force. As would be expected, this force acts on a system
and at the same time depends only on the given system through its energy-
momentum tensor. It is well known that the coefficient (G)"? in (4.34)
results from the fact that (G)'/?d®z is the invariant volume in space-time

with the stochastic metric G,,.
The energy-momentum tensor of particles in the special theory of

relativity is given by

1** =Y m, J (dg3/dr) det 8 (e ¢,) (4.35)

n

where integration is carried out along the particle’s trajectory. By analogy
with the definition of the electromagnetic current J*, we conclude that a
contravariant tensor coordinated with (4.35) in the case where gravity is
absent is naturally defined as

™ =G 'Y m, J (dz*/dr) dz% (2 —z,) (4.36)

In the case of a background radiation stochastic field ¢,,(x), expression
(4.36) takes the form

T* =g }V*¥ m, J (dx%/dr) dx? 8 (x—x,) (4.37)

for which the averaging procedure can easily be carried out.
Now we calculate the energy-momentum tensor of the electromagnetic
field F**. Its form in the special theory of relativity is

1P = FSFPY —1n*PF s F® (4.38)
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It is not difficult to verify that the contravariant tensor coinciding with
(4.38) in the absence of gravity is

T = FYF" - 1G*F,, F" (4.39)

For a system consisting of particles and radiation, the energy-momentum
tensor is formed of two parts, (4.36) and (4.39). Returning to energy-
momentum tensor (4.36), for matter only, one easily calculates its integral
form

J TG d*z =Y m,(dz"/dr)

where the sum involves all particles in the volume over which integration
is carried out. It assumes that one needs to regard T*°- G'/? as the spatial
density of energy-momentum. From this, in particular, one can find the
energy, momentum, and angular momentum for an arbitrary system:

pr= J TG 43z (4.40)

T = J (T =2"T*)G"* d’z (4.41)

However, these quantities are not covariant tensors and are not conserved,
since T**G'? is not preserved, i.e., 8( T#*G'/?)/3z* does not become zero,
due to the fact that the exchange of energy and momentum between matter
and gravity takes place.

4.4. Hydrodynamics and Hydrostatics

In the absence of gravity, the energy-momentum tensor of an ideal
liquid is given by the following formula [for details, see Weinberg (1972)]:

1 =pn°P+(p+p)uu” (4.42)

where u® is the four-velocity of the liquid and u°=(1-v*/¢?) 7" u=vu’.
The contravariant tensor, which is reduced to (4.42) in the absence of
gravity, reads

T =pG*+(p+p)U*U” (4.43)

where U" is the local value dz*/dr for the liquid element in an accompany-
ing system of reference. Notice that p and p are always defined as the
density of pressure and energy measured by an observer in the local-inertial
system of reference moving together with the liquid at the moment of
measurement, and are therefore scalars. Let us consider the conditions of
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the conservation of the energy-momentum tensor, leading to the hydrody-
namic equations:
T =(8p/9z")G*"+ G Vo[ G"*(p+p) U*U")/32"}
+T%(p+p)UU =0 (4.44)

The last term in (4.44) represents the gravitational force acting on the system.
Notice that since naBu"‘uB = —1 in the absence of gravity, we should write

G, U*U"=~1 (4.45)

in the presence of gravity with the stochastic metric G,,,.

As an example, consider the case when the liquid is placed in a state
of hydrostatic equilibrium. Since the liquid does not move, expression
(4.45) leads to

UO=("GOO)_1/2, U'=0 for A#0

Moreover, all derivatives of G,,, p, and p with respect to time variables
disappear. In particular, we have

Tho=—-1G"" 8Gyy/d2”
and
A(p+p)U*U"1/32" =0
Multiplying (4.44) by G,,, we get
—ap/3z* =(p+p) o[In(— Goo)/?1/82* (4.46)

As in the usual case, this condition is trivial for A =0, while for spatial-like
value of A, expression (4.46) is regarded as the usual nonrelativistic condition
of hydrostatic equilibrium, where we should put p+p and (—G,,)"? instead
of mass density and gravitational potential, respectively. Equation (4.46) is
easily solved if pressure p is given as a function of p. The solution has the
form

j dp(p) [p(p)+p]~" = —In(— Go)"/*+const (4.47)
For example, if the dependence of p(p) is the power law p(p)~ p”, then
equality (4.47) for N # 1 reads
(p+p)p™" ~ (= Goo)' ™2 (4.48)
but for N =1,
p ~ (= Goo) 727 (4.49)
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In the usual theory of gravity the latter shows that when p =p/3, gravity
never supports the equilibrium of an ultrarelativistic liquid located in a
finite volume, since in this case, expression (4.49) has the form

P~ (_Goo)_2

Since p must be equal to zero outside the liquid, G, is a singular function
on its surface. However, in our case, when the fictitious radiation field
£,,(z) is strong, i.e., it is quite possible to compensate a pure gravitational
external field g%, by assuming

ggo = —Epo— %Sg(x)spo(x) = %Eg(x)é‘po(x)

then gravity with a high fluctuation of the space-time metric may support
the equilibrium of an ultrarelativistic liquid located in a finite volume, since
the condition p— 0 is achieved by means of the equality

oo~ —5e6(x)e0p(x) (g (x)|>1)

where the true gravitational metric ggo(x) # o on its surface.

Finally, it should be noted that contributions of gravitational effects
to any physical system due to a stochastic fluctuation in the space-time
metric is calculated by the same method as used in the usual theory of
gravity by using the general covariance principle.

5. MODIFIED EINSTEIN EQUATION IN SPACE-TIME
"WITH STOCHASTIC METRIC

In this section we reconstruct Einstein’s equation from the point of
view of a stochastic fluctuation of the space-time metric. Here our goal is
to find a gravitational field equation written in the general covariant form
by using the equivalence principle for gravity itself. Before obtaining the
corresponding field equation one must form the curvature tensor by means
of the stochastic metric and carry out some tensor algebraic operations.
Now we turn to these complex problems.

5.1. Redefinition of the Curvature Tensor

In accordance with the usual theory of gravity, we first construct a
tensor from the stochastic metric tensor and its first and second derivatives
in space-time with a stochastic metric. In order to do this, we recall the
transformation rule of the affine connection (see Section 3),

A aZZr'r

BY 92" gz azv TP 9z az* az”

A 10 1o
A 927 9z%9z" 8z

(5.1)
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This is just reiation (3.10) in which the primed and unprimed coordinates
are rearranged. On the right-hand side of (5.1) there is a nonhomogeneity
damaging the tensor character of I'},(z), and therefore, we attempt to
separate it:

622!7 aZ/-r N ale azld

- - e 52
az* az® 3zt M gzt 4zv " * (5.2)

In order to avoid the left part, we use the noncommutability of partial
derivatives. Differentiation over z* gives

rz" i (az” . 9270z )
0z” 9z 9z” *"\az" ¥ 4z* 9zt ’w)
! a ’ 1€
- g_z_"(az’ . 9270z w)
o7 37" oz" az" ™
1o 00 4] 73
_pr 92 (az 92 GLF";
P7 927 \az"? " 9z* 9z* "

3z"

xV

T A o ! T

9z oL, 02" 9z 627" o,
az"  9z" 9z” 9z" 9z

Further, collecting similar terms and rearranging some indices, we get

¥z7 " (al‘,ﬁ,

9z" 9z* az"  9z* \ 8z”

+1"Z,,F;‘m>

9z'7 92/ 92’ (ol .
il DAY R VA R

az* 3z" 9z" \ 9z
0z'7 9z'? 9z'f 9z'f
_pr 8 (g 92 e 827 ) 53
o az"( T 9zt *3z” (5.3)

Rearranging indices » and » and subtracting the obtained result from
(5.3), we see that all terms involving the product of I" and I'" disappear and
the following expression remains:

9z’ foT2, ol
O=—y | —& 22y pnTr 7 T2
82/\ ( aZx aZV M n 22 M
9z 92’7 3z'"

oz* 9z" 8z”

5 (ar Ty
9z’ 8z'¢

IT VA 1T VA
- Mfrnp+ Anrcfp)
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It can be rewritten in the form of the transformation

9z'" az* 8z" 9z”
Ry, = S S22 pa 54
T 9zt 92" 92’7 9z’ M (5.4)

where
RﬁmEaI‘ﬁ,/az"—aI’fm/az”-I—FZVI‘ﬁn—I‘ﬂxI‘ﬁ,, {5.5)

Equation (5.4) asserts that Rf‘m is atensor; we call it the Riemann- Christoffel
curvature tensor defined by using a stochastic metric. The tensor (5.5)
constructed in this way is unique. For the proof of this, see, for example,
Weinberg (1972).

In the limit of a weak field ¢,,,(z) or small fluctuation of the space-time
metric, one can average (5.5) by using definition (2.24) for the affine
connection I'},(z), where the stochastic metric G,.(z) is given by formula
(2.13). To carry out the averaging procedure for (5.5), we first define the
explicit form of I'},, that is

uys
I.,(2) =T = 3e°(2) Voo +26°2(2) 3(2) Ypopn + 3857 E, .00
~16”(2) .., +380 By un+ O(&7) (56)

where Ffj‘y(z) and g5*(z) are the usual gravitational affine connection and

the metric tensor, respectively. In (5.6) we have used the following notation:
Youur(z) =080, /02" +08%,/02" —3g%, /02"
&,..(2)=0e,,/02" +3de,,/02" — 3¢,,,/32° (5.7
E,...(z)=0(c7e,. )/ 02" +3(e)€e,.) /32" —d(e e,y ) /92"
Assuming (9¢7(z)/9z" - €,,). =0 for the background radiation field ¢,,(z)
without a particle, we find
(TA,(2)), =T%(2) +3D%EN0) Y, 00 (5.8)
where
D (0) =3(858° + 87185 — 18°°5%) D(0) =36 D(0)
for the Euclidean procedure of taking the covariances of field ¢,,(z). The

averaging R),.(z) with the combination of the metric tensor G,.(z) will
be given in Section 5.3.

5.2. Ricci Tensor and the Scalar Curvature

By using the metric tensor and linear combinations of the curvature
tensor R}, one can construct other tensor quantities. Among them the
contracted forms are most important:

1. The Ricci tensor

R,.=R},, (5.9)
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2. The scalar curvature
R=G"*R,, (5.10)

To carry out the averaging procedure for these tensors it is useful to
express R,ﬁ,,,‘ through the second derivative of the stochastic metric tensor
G, . For this purpose we consider its covariant version R,,..= G\-R},..
Taking into account definitions (5.5) and (2.24), we get

Rypon =310 (0G 7.0/ 82°) =3 Gr0 (0G ™Y1/ 927)
+ G (TS, —T LT (5.11)
Further, by using the identity G*’G;, = 85, one can easily ensure that
G\, 0G*7/3z" =—=G* §G,,/0z" = - G?(I'\ G, + T, G,))
With this formula, expression (5.11) takes the form
Rypin = 5N = (U0 G + T2 G, + (10, G + 17, G )T
+ G\ (LI, -TLT)
where
Nyue =8°Gy, /82" 32* —8°G,,, /82" 32"
—-8°G,, /32" 9z*+9°G,, /92" az* (5.12)
Most terms of the I'T' type mutually cancel, the result reads
Ry =3 Nar+ G TS, ~T1T,) (5.13)

As in the usual theory of gravity, from (5.13) it is easy to see the algebraic
properties of the curvature tensor:

1. Symmetry
Rypi =Ryurp (5.14)
2. Antisymmetry
Rypon = = Ryrwn = = Riypae = Ryns (5.15)
3. Cyclicality
Rypvn T Ry + Ry, =0 (5.16)
The property of symmetry (5.14) shows that the Ricci tensor
R,.=G" Ry, (5.17)
is symmetric
R..=R,,
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and the antisymmetry property (5.15) asserts that R, is unique. Indeed,
multiplying (5.15) by the quantities G**, G*, and G™, we get

Ry,x = “"GAVRI_,,)\W = —GI\VR)\;LxV = GAVRF')"‘V
G/\N‘RM“’% = GW‘R)\;.wx = 0

From the antisymmetry condition (5.15) we see that there exists only one
possibility contracting R, .. for obtaining scalar:

R = G"G"** Ry = =G G**Ryrsm
0=G"G" R, ,..»

The condition (5.16) excludes another scalar which would be formed in the
four-dimensional space:

G—l/ZsAuule\y‘Vx = 0

5.3. Averaging Procedure in Space-Time with the Stochastic Metric G,,,

Now we are able to average the Ricci tensor R,,,, and the combination
G,.R in space-time with a small stochastic metric G,,,. First, we do this
for R,,,.(z). Inserting definitions (2.13), (2.22), and (5.13) into equality (5.17)
and carrying out some elementary calculations, we have

R..=R).+Q.,.+M,, (5.18)

where RS, is the usual Ricci tensor defined by the metric tensor g5, for an
external gravitational field. The additional quantities M,, and Q,, are
proportional to the field ¢,,(z) and its squared values:

M, = _%EMN:LAW + %gmyNi,\ux + gOW\gg;aA?ZAm

(=M goe+ £, NI, —TIT0) (5.19a)

Q/—LK = %EMSEN:LAW - %EMNi).ux +§1g0)\VN:ZL/\Vx

(=gt €08 AT

+(3e*e3g0, — e+ 1867 e,,)

X (DT —T AT + 87 g AT (5.19b)
where

Iy, 8L, 3L, N oI,

9z* az* 9z*oz" 9z” 9z 9z” 8z"’

Nipin = i=1,2,3 (5.20)



656 Namsrai

1 _ .0 2 3 __p
Iy.V_g,uV, I[LV_E[/.V: Ipw_'ep.svg
no — _1.p700 1 .om700
Alp./\vx__ie Fu,x’)’p;w\-i—ig F[J,V‘Yp‘,k)\
—1_ poT Oy 1.po0n .
2 FVAYp;Mx+2€ FxA’),p;uv9 (5-21)

no  _3 . py n700 __3 _py 0o
AZ}LAV%—SE E‘YF}L%‘YP',V/\ g€ 5«/F#V’)’p;x,\
1.pn_p'c 1 pn po
+ 2878 Yo Yo T3 ET T Yoo Yoiuy
3. p'x _opOn _ 3.y o0
+86 erw\’)’p';p.x s€ E‘nyA’yP’;;,LV

+ igopngOp'O‘%P;m %p - igopngop'tr gp;x)x gp (522)

7 v

where the values of v,.,, and &,.,,, are determined by formula (5.7).
In order to find the covariance of the field £,,(x), we use the same
method as in Section 1.2. Here we employ the divisors

diNg")=qfqr —q88..,  duXg®)=q5q0/9E ..
and the conditions (1.18a), (1.18b). Thus, recalling

eul2)=1"'2m)™ J d'qe™&,,(q)

8 er,(z)/9z2” 9z = i(2w)™* I d*qq.q, e, (q)

and
(gm(ql)fpa(qz» = i(27T)46(4)(‘I1 + q2)D/\V,po'(ql)
we obtain the following covariances:
Dy.v,po‘ = <E;u/(z)8p17(z)>s = i_1(27T)74 I d4q D,u.v,pa'(q)
D:)S,Av;x,u.=<8p5(z)'azeAv(z)/aZx az“)s (5-23)

=i(27)™" J d*q 4,4,D,5,,(q)

or in the Euclidean metric

Dp.v,pE = (277-)_4 J d4qE DEV,pS(qE)
(5.24)

D:ui/\v;x;L = —-(277)'4 J‘ d4qE qfq/foS,/\v(qE)

Here we distinguish two versions of the definition of the covariance resulting
from (5.23) and (5.24), respectively. It is easy to verify that the case (5.24)
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leads to
Dyt p5(0) =5(8,,8,5 + 8,58, = $8,.,8,5) D(0)
D,lm,,u;m(o) ={(4/3a +é)(5vA5p,.L3¢m + 8V/\6px5;1.0‘)
+(4/3a5)8,18,08 0+ (4730 —3)(8,,85 .80 + 8,818
F 80808 T 818208 T 8,00,.0
F 8008318 F 803,800 F 8,Br0B 1)
+(4/3a+25)(8,,8r00,n 8,818 0
+ 8,681,8n F 8,808,601 D1(0), a=1 (5.25)

where the functions D(0) and D,(0) depend on the conditions (1.18a) and
(1.18b) and are defined by the formulas

. G*(2m)™ J d*qq*DiV(¢®)  for (1.18a)
D@y=y (5.26)
G/l for (1.18b)

and

G*2m) J' d*q¢°D{V(g?) for (1.18a)
Dy(0)= (5.27)

G(zw)"*J d*q ¢*DP(g%) for (1.18b)

For the case (5.23) one obtains the same formula (5.25) in which the
Kronecker symbol §;, should be replaced by the Minkowski metric n,,.
For precision, we further use expression (5.25).

Finally, taking into account relations (5.19a), (5.19b), (5.24), and (5.25)
and after some elementary but tedious calculations, we get from (5.18):

(R..)s = RS +¥D(0)N} ... +1(64/ a+2) D, (0)5,,, + N,..
+8AL ~Qut L, +M,,, a=1is (5.28)
where -
Now =5D(0) (295,00 Vorsox = Yoo Yosser — Yorpw Yoimo
- Ll;')’p;,\,\ Yo ux + %Yp;xAYp;;u\)
A;m = IS(O)('}’o-;/\AF?:; - %;MF%)
Qur =3D(0) @I T, —TAT 0, —TUT)
Ly =15D(0)g° {=9(¥p:aT %o = Vol %) (5.29)
52V n Yopsgie = Vopyod Yrsow)
485 (Vora Yorn = Youur Yorus)
1800 Vo on Vs = Yo Vopsser ) 1}
M., =55D,(0)[31g%"g%, —20g%, —14(g**)?8,,,, + 405, ]
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Here the quantities N} ,,.., Vorur s D(0), and D,(0) are given by the first
terms of (5.20), (5.7), (5.26), and (5.27), respectively.

To define the contraction G, R, we use definition (5.18). After some
calculations its averaged value takes the form

(G[.LVR>S = gz.x R0+ %RODﬁ,xp(O) - R([)'!B’<8y.x€BB’>
+ %gz.xR%ﬁ‘DgS’B’(O) + gOﬁBI<SMxMBﬁ’>
—ggx(goﬁﬁ’(Qﬁﬂ)"‘<EBFM63'>) (5.30)

Calculation procedures similar to those carried out above for obtaining
the averaged tensor R,,, give

(G,.R)= g%, R*+3D(0)R%S,,. —~3D(0)(2R", - 15,..R%,)
+3¥D(0)g%.R%,+ g% [A+ g% P (2Ngs + Mgg —2Qpp
+8 A5+ Log) —S5Aps ]+ Qe (5.31)
where
A=3D(0)38°%° Nipae+3(Npgan+ Nigar — NG
Qe = —1eD(0)8%° (N oo+ Nigp =38, Nigag)

+35D1(0)[48%8 0. — (8%°)7 8,0 — 480 +48,..]

+58D(0) 8% 87 [ 2, Vrsow = Vison Vs = Voson Vissps

~ 380 (Y80 Yorso'n = Y88 Yron) 1

+3D(0)2°* 148, Aps =T Ve

+ 3T 8% Vi + T 5 Yspn)

+ 82 2l s e —Tipal %8 ~ T pa g0 ]

Other quantities in (5.31) are defined by (5.29).

5.4. The Einstein Equation in Space-Time with Stochastic Metric

First we note that it is not difficult to reconstruct the Einstein equation
in space-time with a stochastic metric from first principles, as done in the
usual theory of gravity. If we use the general covariance principle discussed
in Section 3.1, then the corresponding generalization of the Einstein equation
may be made by redefining the Ricci tensor R}, > R,,, scalar curvature
R°> R, and the energy-momentum tensor T%,~ T,,, which enter into the
usual Einstein equation. In previous sections we defined the Ricci tensor
and the scalar curvature R by means of the stochastic metric tensor and
averaged their quantities in the limit of weak field ¢,,(z).
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Now the question of how to redefine the energy-momentum tensor in
space-time with a stochastic metric arises. We assume that its covariant
structure is conserved under the transformation x* - z* of the coordinates.
Thus,

a B B 8
oxax” - ax"ax” 9&" 3£

T, (z)=— B =
wi(2) oz 8z" " * az* az” ax“ axP T ™

(5.32)

where T{,B is the energy-momentum tensor in the local-inertial system of
reference £ The energy-momentum tensor in the quasilocal-inertial system
of reference x” with the stochastic metric (1.11) is defined as

« 087 08 o
af .‘axa axﬁ op (5.33)

According to the Jacobian of transformation (1.10), its averaged value is
(Tip)s = Thel1 +75D(0)]+5D(0) T},8. (5.34)

and therefore, in the presence of an external gravitational field, the energy-
momentum averaged tensor takes the form

ax* ax”
“oz* 9z"

(T, (2))s = T%I1+5D(0)1+55D(0) TS, (5.35)

where T, is the usual energy-momentum tensor in the presence of gravity
without the stochastic metric, and the connection between coordinates x*
and z* is defined by the standard form as in the usual theory of gravity
with the metric g, .

We assume that in the case of a weak static gravitational field generated
by a nonrelativistic body with mass density p, the 00th component of
the stochastic metric tensor is approximately equal to (for example, see
Section 2.4)

Goo~ _(1 + 2¢f)
Here ¢, is the modified Newtonian potential defined by the Poisson equation
V¢, =4wGp

The energy density T, for a substance moving with a nonrelativistic velocity
is proportional to its mass density

Too=p
Collecting these two relations, we get

V2Goo= 871G Ty, (5.36)
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However, relation (5.36) allows us to assume that the equation for weak
fields with energy-momentum distribution ¢,; has the standard form:

Aaﬁ - _87TGta/3

where A, is formed from a linear combination of the metric tensor and its
first and second derivatives. Then from the general equivalence principle
it follows that the equation which defines a gravitational field with an
arbitrary stress in the presence of the stochastic metric must be of the form

A,,=—-87GT,, (5.37)

where A, is a tensor leading to A,p in the case of weak fields.
By using the standard method as in the usual theory of gravity, in our
case this tensor is given by

A, =R, —-1G.R (5.38)

ny

Inserting this into equation (5.37), we get the Einstein equation in space-time
with the stochastic metric G,,,,

R,,~%G,.R=-87GT,, (5.39)

The averaging procedure for this equation may be followed using
expressions (5.28), (5.31), and (5.35).

5.5. The Bianchi Indentity and the Coordinate Conditions

It turns out that in the gravitational theory with the stochastic metric
G, the Bianchi identity and the coordinate conditions are fulfilled. The
former can be obtained by introducing the quasilocal inertial system of
coordinates at the considered point at which I'}, is approximately equal to
zero up to the order of (I3,/1°). At the given point, expression (5.13) gives

Ryprnin =3 0N, /327 (5.40)

where N,,,.. is given by (5.12). By cyclic rearrangment of the indices v, x,
and 7 one can obtain the Bianchi identity

Ryt Ropivin+ Ry =0 (5.41)

These identities are explicitly covariant, so that they are valid in any system
of reference, including quasilocal inertial ones.

The contracted form of (5.41) is sometimes very useful. According to
the fact that covariant derivatives of G disappear, and contracting A and
v, we find

Rux;n—Run;x+Ran;V:0 (5.42)
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Contracting this relation again, one gets
R, —Ry.,.— R:z;v =0

or
(RY—-164R)., =0 (5.43)

An equivalent but more well-known formula has the form
(R* -1G*'R).,=0 (5.44)

as in the usual theory of gravity.

To explain the coordinate conditions in our scheme with the stochastic
metric, we first note that the symmetric tensor A, in (5.38) has ten indepen-
dent components, and therefore, Einstein’s field equations (5.39) consist of
ten algebraic independent equations. However, from the Bianchi identity
(5.44) it follows that there are not ten functional independent equations,
but only 10—4=6 equations. These equations remain four independent
degrees of freedom in ten independent components of the stochastic metric
tensor G,,,. These degrees of freedom correspond to the fact that if G,, is
a solution of Einstein’s equation, then another solution is G/, which is
obtained from G,, by means of an arbitrary transformation of coordinates
z” - z'". This transformation of coordinates gives rise to four arbitrary
functions z'*(z) corresponding to just four degrees of freedom in the
solutions of equation (5.39). Further, by choosing a concrete system of
reference, one can eliminate ambiguity in the metric tensor. The choice of
the system can be expressed in the form of four coordinate condition, which,
by supplementing six independent Einstein equations, lead to a synonymous
solution. It is more convenient to use the condition of harmonicity of
coordinates

"=G*T,,=0 (5.45)

To show that choice of the coordinate system in accordance with these
conditions is always possible, recall the transformation equations for the
affine connection

9z 927 92”7 9z° 927 8°7"

9z az'™ 9z° 9z°

1A
Y 9zf 9z 92"

ki‘a

[see equation (3.15)]. Contracting this equation with G'*”, one finds that
" =(8z""/92")T" — G* 3°z" /92" 32° (5.46)
Therefore, if T'” disappears, we can always introduce a new system of

coordinates by solving the following second-order partial differential
equations:

G* 8’z /9z" 9z° = (92" /az")T*



662 Namsrai

Then equation (5.46) leads to I"* =0 in the system of coordinates z'". Of
course, the four conditions (5.46) are not in general covariant, but their
necessity is dictated by the elimination of ambiguity which appears in the
metric tensor due to the covariance form of Einstein’s equation.

Although we cannot write these conditions in the form of covariant
equations, we can make them more elegant by expressing the affine connec-
tions through the metric tensor:

I =1G*' G
Recall that
G* 3G,,/8z" =—G,, dG"*/oz"
1G* 3G, /92" =G "*3G"*/az"
[see the formulas (3.39) and (3.41)]. From this it follows that
M=-G7?3(G"*G*)/oz" (5.47)
and the conditions leading to harmonic coordinates take the form
dG*GM) /32" =0 (5.48)

If there exists only the fictitious background radiation field ¢,,(x), then
relation (5.48) becomes the exact equality

(g gBl/axP =0 (5.49)

Now we explain the term “harmonic coordinates.” It signifies that the
function F(z) is harmonic if it satisfies the following equation:

OF(z)=0
where [0 is D’ Alembert’s invariant operator, given by
OF =(G*F,,)... (5.50)
Making use of (3.36), (3.42), and (3.40), we get
OF = G 8°F/az" 92" —T* 9F /92" (5.51)

IfI'* =0, then the coordinates are harmonic functions (5.50), thus warranting
the name “harmonic” for such a system of coordinates.

In the absence of both external gravitational and additional background
fields, the explicitly harmonic system of coordinates comprises the Mink-
owski coordinates in which G = n** and G = 1, so that the relation (5.48)
is fulfilled identically.
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6. CONSTRUCTION OF THE THEORY WITH QUANTUM
FLUCTUATION OF THE SPACE-TIME METRIC

In this section, instead of additional background radiation stochastic
fields e,,(x) considered above, we deal with some quantized field ,,(x)

B (x)=Y J dofa(k, ple,,(k, p) e +a"(k, p)ek,(k, p) e ™]

doy=(2m) 2Lk, K°=[K|

where e, (k, p) is the polarization tensor of the graviton with the momentum
#k and the helicity p. Creation a'(k, p) and annihilation a(k, p) boson
operators satisfy the following commutation rules:

[a(ka P), a+(k” P’)] = Spp’6(3)(k—k,) (6'2)

la(k, p), a(K, p))]-=[a"(k, p), a" (K, p")]-=0 (6.3)
Here our purpose is not to quantize the gravity with the field (6.1), but we
use it as a method of introducing quantum fluctuation in the space-time metric
and consider its consequences in accordance with previous sections.

Notice that with the Hamiltonian constructed by means of (6.1) the

quantization of gravity encounters some difficulties caused by the fact that
the operator (6.1) cannot be the Lorentz tensor, since the summation over
helicities is restricted by physical values of p = 12, while, as will be shown
below, a true tensor would have helicities 0, +1, +£2. From the very beginning
we can start from a true tensor, and then subject ¢,,, to a gradient transforma-
tion in order to forbid unphysical values of helicities 0 and =1. However,
by selecting a gauge in such a way, then £,,(x) is already not a tensor. If,
instead, we assume that e, e.3, €9, €, €y, €01, and e;; disappear when
k is directed along the third axis, then the gauge condition is not the Lorentz
invariant. Indeed, if we make these components equal to zero, then under
the Lorentz transformation A% the quantity £,,(x) does not simply pass to
AfSATE,,(x), but undergoes an additional gradient transformation

o
£, (x)> ALAVE,(x)+8h,/3x” +dh,/ox*

where h,(x) are arbitrary small functions (see below).

Thus, the construction of the Hamiltonian from the field £,,(x) and
the derivation of the Lorentz invariant probability transitions represents a
more difficult problem [for details, see, e.g., Arnowitt and Deser (1959),
Arnowitt et al. (1959, 1960, 1061), Dirac (1959), Feynman (1963), Faddeev
and Popov (1967), Mandelstam (1968), and DeWitt (1967, 1968)]. Recent
achievements in quantum gravity based on new ideas and approaches are
extensively given in the proceedings of the second Oxford symposium edited
by Isham et al. (1981) and of the 11th international conference on general
relativity and gravitation edited by MacCallum (1987).

(6.1)
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6.1. Weak-Field Approximation

Now we show that the additional term in the space-time metric given
by formula (1.11) or (2.13) defines indeed a wavelike solution to the Einstein
equation (5.39) for the c-number field ¢,,(x). To study this problem, we
shall turn to the weak-field limit, omitting the square term in the field ¢,,,(x)
in (1.11) or (2.13). Thus, we assume that the metric G,, becomes the
Minkowski one,

G, =Nyt €4 (6.4)

where |g,,(x)|« 1, and therefore we have omitted the term of the type
e5(x)e,,(x); &,.(x) is a c-number field. Further, we follow Weinberg (1972).
Thus, in the first order of ¢,,(x), the Ricci tensor has the form

R,.=~dl'),/0x” —al'%,/ax* + O(&?) 6.5)
and the affine connection is
[, =m"E,,.(x) (6.6)

where the expression £, ,,,(x) is given by (5.7). When we restrict ourselves
to the first order of ¢,,, then the lowering and the raising of all indices
should be carried out by means of n**, but not G*”, i.e.,

e, (x)=el(x), ™ 8/0x" =9/ax",  and so on

In this approach equations (6.5) and (6.6) give the Ricci tensor in the first
order:

1 oel ER a’e)
R,.=RY)==|0e,, ——————FLt-+—-2 6.7
. K2 Hoax? ax* axt ax” axM 9x” (67)

Therefore, the Einstein field equation is written as
azs',\, azsﬁ 828?\

£,,— - =-167GS,,,

HoaxM axt* axtax” ax* ax” .
(6.8)

S/.w = T;w “%'ﬂ,wa\

Here T, is chosen in the lowest order in ¢,,,, and does not depend on ¢,,,
satisfying the usual conservation law

aTh/ax* =0 (6.9)

Notice that the conservation law (6.9) written in such a form ensures the
coordination of equations (6.8), since (6.9) assumes the correctness of

a8k /ax* =138/ 3x”
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whereas the linearized Ricci tensor satisfies the Bianchi identity in the
following form:
IR /ax" =35[[er — 5% Jax™ ax®]/ax” =L RV /ax”

As discussed in Section 5.5, a field equation such as (6.8) is not expected
to lead to a unique solution, since, given any solution, one can always
change coordinates to obtain other solutions. A more general transformation
of coordinates, keeping the field to be weak, has the form

x> x™=x"+h*(x) (6.10)

where 0h*/9x” is of the same order as the ., field. In the new system of
coordinates the metric is written as

—ax/,u. ax/v \
ax* ox”

Hav p

or, since G*” = n*" — "’ one can write
g™ =g — 9™ oh*/ax* — ™" oh” [ ax"
Thus, if ¢, is a solution of equation (6.8), then so should

£l =£,, —dh,/3x" —oh,/9x" (6.11)

wv

where h, = h"7,, are four small quantities and, generally speaking, arbitrary
functions of x”. Substituting {6.11) into (6.8), it is easy to verify immediately
that (6.11} is also its solution. This property is a consequence of the so-called
gauge invariance of the field equation.

The gauge invariance of the field equation (6.8) gives rise to difficulties
when we want to solve it exactly. However, these difficulties can be removed
by choosing particular gauge, i.e., some system of coordinates. It is more
convenient to work in the harmonic system of reference for which

G*'T3,=0
By using (6.6), then in the first order one gets
el /ax" =%asﬁ/ax" (6.12)

Such a choice is always possible, and follows from the general arguments
expounded in Section 5.5. From the expression (6.11) it is also seen that if
€, does not satisfy the condition (6.11), then by carrying out some transfor-
mation of the coordinates (6.10) provided

Oh, =3¢k /ox* —33¢ek/ox”

we find some tensor ¢, which has already satisfied the condition (6.12).
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Therefore, it will be assumed that ¢, is indeed the solution of equation
(6.12). Inserting (6.12) into (6.8), we can write the field equation in the form

De,, = —47GS,, (6.13)

One of the solutions represents the retarded potential
£,.(X, 1) =4 J d*x’ |x—x’I'ISM,,(x’, t—|x~x) (6.14)

As mentioned above, the conservation law (6.9) for T"” is equivalent to
aSk/ax* =338k /ax” (6.15)

and in consequence of this, the solution (6.14) for the source S, located
in a finite volume automatically satisfies the harmonic coordinate condition
{(6.12). To the solution (6.14) can be added any solution of the homogeneous
equation

De,. =0 (6.16)
dek/ox* =3 0ek/ax” (6.17)

We understand the expression (6.14) as the gravitational radiation generated
by the source S,,,, whereas any additional term satisfying (6.16) and (6.17)
represents gravitational radiation coming from infinity. The appearance of
the time variable £ —|x —x'| in (6.14) shows that gravitational effects propa-
gate with the single velocity (¢ = 1), i.e., with the velocity of the light.

6.2. Plane Wave Solutions

Let us consider the plane wave solutions of the homogeneous equations
(6.16) and (6.17), since they play an important role in understanding the
physical nature of the gravitational radiation field and, moreover, as shown
below, retarded waves become plane ones at r > 0. A general solution to
equations (6.16) and (6.17) is a linear superposition of solutions, written
in the form

eulx)=e,, e +e¥ e (6.18)
Such a solution satisfies equation (6.16) if
k.k*=0 (6.19)
and the condition (6.17) if the relation
k, et =3k, e, (6.20)

holds. It is obvious that the matrix e,, is symmetric:
(6.21)

Cuv = €y

We will call it the polarization tensor.
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In the general case, a symmetric matrix (4x4) has ten independent
components. However, the four relations (6.20) reduce their number to six
and of these six components only two have the meaning of degree of physical
freedom. By carrying out the transformation of coordinates x* - x*+ h*(x),
we change the metric 7,, +¢,, to the new metric n,, +¢,,, where ¢}, is
given by the expression (6.11). Assume that we choose h*(x) in the form

h*(x) = ih* ™ — jp*r ik (6.22)
Then (6.11) leads to the expression
e (x)=el, e +ek e ™ (6.23)
where
e, =e,,+kh +kh, (6.24)

Notice that waves nevertheless satisfy the harmonic coordinate condition
(6.20). It may be concluded that for four arbitrary parameters h,, the
polarization tensors e,,, and e,, correspond to the same physical picture.
Namely, from six independent components satisfying (6.20) and (6.21) only
6 —4 =2 have physical meaning. For example, consider a wave with wave
vector

K'=k*=0, KkK=k=k>0 (6.25)

propagating along the z axis in the direction of increasing values of z In
this case, the relation (6.20) reduces to the conditions

e teg =epntenp=>0
— =1
€33+ eg3 = —eg3 — €go =3(e1, + e+ e33—€gp)

These four relations allow us to express e, and e,, through the other six
components e,,,

—_ 1 —
€01 = €3y, €02 = — €33, eg3 = —3(e33+ eqo), €= —€y (6.26)

Then in the system of coordinates transformed by the formulas (6.10) and
(6.22), these six independent components e,, are changed in accordance
with equations (6.24) by the components e, :

—_ L
el = ey €2=¢€y2
e;3=e13+khl e;3=e23+kh2
833 = €33+2kh1 660 = eoo—zkho

Only the components e;; and e,, have a true physical meaning. Indeed,
one can always find a transformation of coordinates with

hy=—ey;/k, hy=—ey/k, hy=—es;/2k, ho= eq/ 2k
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which renders all components of e}, zero with the exception of ef,, ei,,
and e}, =—e!;.

The difference between the separate components of the polarization
tensor becomes clear if we understand them by the changing of ¢,,,(x) upon
rotation of the system of coordinates around the z axis, i.e., under the
following Lorentz transformation:

Al=cos 6 Al=sin 0
Al=-—sin @ A>=cos 6 6.27)
Al=AJ=1 all other A¥=0

Since such a transformation assumes the vector k, to be invariant (A} k, =
k,), then only the polarization tensor is subjected to the transformation

e,,=AAT e, (6.28)
Making use of relation (6.26), we find

el =exp(£2if)e., fl=exp(x2i0)f., ey = e, €50 = €g9
{6.29)

where

e.=e; Fiep=—epFie,
(6.30)
fe=e5 Fies, = —eg ey

Let us say that any plane wave i transforming by the rule
' = ey (6.31)

under rotation of the angle # with respect to the direction of the spreading
of the wave has helicity h. So, it is seen that the gravitational plane wave
can be decomposed into the following components: e, possessing helicity
+2; f. with helicity £1; and also ey and e;; with zero helicity. However,
it is easily proved that the components with helicities 0 and +1 become
zero by the appropriate choice of the system of coordinates, and therefore,
only the components with helicity £2 have physical meaning.

It is useful to compare the above formalism with electrodynamics. The
Maxwell equations in the Lorentz gauge have the form

%A, =0, OA, =-J, (6.32)

In empty space these equations acquire the analogous form of (6.16)
and (6.17):

0A, =0, 0A%/ax* =0
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for the metric written in harmonic coordinates. Here we deal with the inertial
system of coordinates, and therefore,

O=n"* 8°/6x" 9x*®

The solution of the given equations, as for equations (6.18)-(6.20}), can be
written in the form of the plane wave

A, =e, e™ + et o7
where
k%k, =0, k,e*=0

Generally speaking, e” would have four independent components, but
the condition k, e® =0 reduces the number of independent components to
three, while the condition (6.20) increases the number of independent
components e, to six. Further, with the Lorentz gauge and the unchanging
physical fields E and B, analogously with (6.11) and (6.22), one can change
A, by using the gauge transformation

A~ AL =A,+0f/ox,, f(x)=ic e™ —ig* e~

By analogy with (6.23) and (6.24) a new potential can also be written in
the form
Al =¢l ™+ e* g7 el,=e,—6k,

The parameter 8 is arbitrary, so that, of the three algebraically independent
components e,, only two have physical meaning, just as the general covari-
ance leaves physical meaning for only two of the six independent com-
ponents. In order to isolate these two components e,, consider a wave
propagating along the z axis with the vector k* given by the relations {6.25).
Then from the condition k,e® =0 there follows the equality e,= —es,
whereas the condition (6.20) allows us to express e,, and e,; through another
six components e,,. Further, the considered gauge transformation leaves
e, and e, invariant, but changes e, by

et=e;—8 k
Therefore, choosing 8 = e;/ k, one can render e} zero and as a result only
e, and e, possess physical meaning, while e,; and e,, alone do not become
zero by any transformation of coordinates. Finally, the physical meaning
of the given two components can be found by subjecting the electromagnetic
plane wave to rotation (6.27). The polarization vector is changed by
e, =Ales
and therefore,

el =exp(xifle., ei=e;
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where
e.=e Fie,

Thus, electromagnetic waves are decomposed into components with helicity
+1 and 0. However, physical meaning belongs only to components with
helicity £1, but not 0, just as gravitational waves may have helicity +2, but
not =1 or 0. All these considerations are valid when we use classical language
and say that electromagnetic and gravitational perturbations are carried out
over waves with spin 1 and 2, respectively.

6.3. Quantization of the Metric Tensor

We see that with the quantum field (6.1) the metric tensor (1.11) in the
absence of an external gravitational field now takes the quantized form

12

gyv(x)=nuv+§uv(x)+28y(x)é‘va(x) (6'33)

Theorem 6.1. Let £,,(x) be the quantized field (6.1) satisfying the
commutation relation

[€..(X), £e(P)]=iD,,, pu(x ~ y) (6.34)

where D,,, ,.(x) is a Pauli-Jordan-like function of the graviton field. Then
the commutation rule

O£ (%), £ (1)1-10) = iDp 0 (X = ¥) + L (x = ¥) (6.35)

holds for the operator-valued metric tensor g,,(x), where the symbol |0)
denotes the vacuum state:

al0y=0, (0la*=0, (00)=1 (6.36)
and
Livoo(x~y)
= Z J‘ [ dwkl dwkz (277)_3(k(1)k2)-1/2
P1:P2 "
x{e' MR et (K, p1)e,q (ks, po)ed (ky, po)ed.(ky, p1)
+ e/.av.(kl » pl)eva(k29 p2)e:‘;%(k1 s pl)egx(kZ’ pZ)] - h.C.} (6'37)

Proof. Direct calculation shows that owing to the commutator (6.2) in
the expression

[é‘,“,(x), gpa(y)]— = [gpv(x), é‘p-:r(y)]— +%[§i(x)é‘v5(x)a epcr(y)]—
+%[€MV(X)’ é:(}’)é‘au(J’)]—
+11_6[€i(x)gv‘o'(x)y é;(y)go‘% (y)]—
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terms of the type a*, a, and a*a appear, and, after taking the expectation
value over the vacuum state (6.36), it acquires the form (6.35), i.e., the
commutator (6.35) is a c-number and depends on a function of the difference
x —y of coordinates.

Due to the explicit form of (6.33), the metric tensor in the case of a
guantum fluctuation of the space-time metric possesses the antisymmetric

property
8 (%) = £1u(x) =3[ £1(x), £,a(x)]= 14D} .o (0)

Further, we use only the symmetric metric tensor defined by means of
the T-product of operators &,,(x):

Gou(X) =8, (x) = My + £, (%) FET(E(x) £, (x)) (6.38)
and therefore,
<0|§uv(x)|0> = n,uv + %D;‘Tua(o) (6.39)

where, by definition,
D;, po(x) =i (2m) ™ j d'p e ™, . (p)(p*—ig)™ (6.40)

is the Green function of the graviton field. Here the projecting tensorI1,,, ,.(p)
for the spin-two field possesses the properties (1.16). Moreover, one can
easily verify that

<O| T[g‘/u/(x)g‘pﬁ (y)]l()) = npﬁn,uv +%7’p5D::Vx(O)
+ D:w,pﬁ(x “,V) +%"71.LVD;C:6%(O)
+16[ Doy (0) D75, (0) + D15 (x = y) Dy (X = y)

o
+ Dlse(x —y) D35 (x— y)] (6.41)

In accordance with the definition (1.12), the inverse metric tensor (1.13a)
with respect to the tensor (6.33) in the given case reads

0

g7 (x)= n“BBZSET{J' dp exp[—B (87 +3€7(x)) (8% +%€E(X))]}

0
or in the weak quantized field limit
£ (x)=m"" =& (x)+3T{&" (x)€7(x)} (6.42)

Thus, introduction of a quantum fluctuation in the metric allows us to
quantize the metric tensor and establish the geometric properties of space-
time with a graviton field. H
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6.4. Dyadic Representation

In our scheme, the basic tensor Dy, .(x) is formed by means of
projected matrices I1,, ,,(k) for which the dyadic representation

I*77(p) =¥ e*"(p, p) e”*(p, p) (6.43)

holds, where five symmetric tensors e*“( p, p) satisfy the conditions

p.e(p,p)=0, m,e”(pp)=0, e (pple.(pp)=28,,
(6.44)

If one can use helicitic states
+1
d*"(p)= % e“(p,p)e*"(p,p), €7 (pp)=(-1)e"(p,—p) (6.45)
p=-1

in dyads constructed from vectors, then we obtain

*#7(p)= % " (p,p,p") ¢ (p, p, p") (6.46)
.0

where the tensors entering into the right-hand side of this expression are
written. through helicitic states with p =1 as follows:

14 ! 1 v I ’ v
e (p,p,p)=5[e"(p,p)e (p,p")+e*(p,p) e’ (p, p)

_6—pp’z e#(p: pl) eV(Ps h—pl)J (647)

Appearing in the last formula are three independent tensors having the form
e (p,+1,-1)=0
and
e’ (p, £2)=e*"(p, =1, £1) =e"(p, £1) e”(p, £1)

and therefore, they describe two helicitic states of the graviton.

It is useful to notice that the metric tensor 7,, can also be formed by
the dyadic representation for the photon field. Since the vector p* is
isotropic, p>=0. Let us introduce the vector j* obtained from the vector
p* by conversion of the direction of the photon motion:

p’=p°  p'=-p, p=0
Then p*+ p* will be a timelike vector, but p* — p* a spacelike vector. One
can add to thera two orthodiagonal unitary spacelike vectors e*(p, p):

e**(p,plep,p)=8,,  p.e"(p,p)=0, p,e"(p,p)=0
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and obtain the following dyadic representation:
0™ =2pp) " (p*+ ") p"+ ")~ (2pp) " (p* = p*Np" —B")
+¥ e*(p,p) ¢”*(p, p)
I

=(pp) '[p*P"+p"P*1+ L e“(p, p) e"*(p, p) (6.48)

Necessity in the choice of complex vectors appears when we want
to study the angular momentum of a particle. Under the infinitesimal
homogeneous Lorentz transformation

x™=x"+dw""x,
the current vector J*(x) is changed according to the law
JH(x"y=T*(x)+ 6w*" J,(x)
or
8JM(x) = 6™ x, 8,J (x) + 8™ J,(x)
from which one can obtain
8J(x)={8e [xxV]}J(x)— S X J(x)
8J°(x) = bew - [x x V]J%(x)
for the three-dimensional rotation, or in the equivalent form,
8J(p)={dw-[px3/op]J(p) — o xJ(p)
8J°(p) =380 [px8/aplJ°(p)

Let us now consider rotation along the axis directed to the momentum of
the particle, when

dw =8¢ p/|p|
A single-particle state with the helicity p for which
8J(p,p)=ipde J(p,p)
is given if and only if
—e*(p, p) xp/|pl=ipe*(p, p)

The vector e which is parallel to p corresponds to zero helicity, and therefore
we introduce a new notation,

e(p,0)=(p°/m)p/lpl,  €(p,0)=|pl/m
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for the vector e”( p, 3). Helicitic states with p = +1 correspond to the complex
combinations

e*(p,+1)—\/—[ e(p, 1) +ie(p,2)]
(6.49)

e(p,~1) =% [e(p, 1)+ ie(p, 2)]

which are chosen in such a way that the relation
+1
—e*(p,p)xbw=i ¥ (80-S), e*(p,p’)
p'=~p

leads to the standard matrix elements of the operator of the unitary spin.

The dyadic representation is useful for expressing geometric relations
of the type of (6.35) and (6.41) by means of the projecting tensor II,,, (k)
or in the next step by the Green functions D,, ,.(x) and Dj, ,,(x). For
example, the function (6.35) now takes the form

Lypo(x~y)= J’J’ dw, doy, (27)" 3(2k92K5)71/2

x {ez(k (k) (x— y)[H ax(k1)n,,a p(kz)
+ H:::;(kl)nvaﬁx(kz)} - h-C.}

6.5. Green Functions of the Field £,,,(x)

The dyadic representation is convenient for direct calculation of the
Green functions of the graviton field £,,(x). First, let us consider the
commutator

Dy po(x = y) =[8,.(x), £,0()]- (6.50)

Substituting the representation (6.1) into (6.50) and using (6.2) and (6.3),
we obtain

d’k

250 I, . (K)[e " — g=*==1]  (6.51)

y.u pcr(x J’) =i (277).—3 J

where the projecting tensor 11, ,,(k),
0 (k) = d, (k) dyy (k) + dup (K)d,, (k) —3d,,. (K)o (K)
A, (k) = M = kK, [
is given by the dyadic representation
M, p0(k) = Z ek, p)ejs(k, p)

(6.52)
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To present the tensor (6.52) by means of the differential operator in x space,
we introduce the operator-valued divisor

a‘,uv(Dxa aJZc) = ("'f],“,[:, +62/&x"ax“)

(6.53)
O=n"*9%/ax* axP,  82=9%/ax" 9x*
and use the identity
d,, e T =d) (k) T, dl (k) =K, — Kk,
it is easy to verify that the formal differential operator
1,.,.(0,8%) =J da e™"L,,, (0, 82,) (6.54)
0

gives the projecting tensor (6.52) in the momentum space. Here
1., ,-(C], 82,) is formed through the operator (6.53) in accordance with the
formula (6.52), where (6.53) should be put instead of d,, (k). Notice that
the operator (6.54) has physical meaning only in the momentum space.
Thus, the function (6.51) can be rewritten in the form

D,y po(x =) =T, 50(0, 9%,) Do(x — y) (6.55)

where

. a’k_ )
Di(x-y)=i"'Q2m)™ J Sl — e

=i"'(2m)” J d*ke(k%)5(k?) e (6.56)

is the Pauli-Jordan commutator function of a scalar particle with mass m = 0.
Calculation of the explicit form of the different two-point Green functions
for particles with spin 0, 1, and 1/2 is carried out in textbooks of field
theory (see, for example, Bogolubov and Shirkov, 1980). We use here their
results. Thus, we have

Dy(x) =51; e(xDH8(A), A=-—-x}i+x’ (6.57)

The well-khqwn discontinuous function £(x°) entering into expressions
(6.56) and (6.57) is given by

1 for x*>0
1 for x°<0

e(x9) =0(x")—0(-x% = {_

where 8(x°) is the Heaviside function.
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Now let us introduce functions D;),,(x) according to

Dg;gpa(x —y) = DE:f)pa'(y - x) = l<01é\uu(x)§po(y)|0>

Thus, we have

] o [ e
Dhalx=y) =i2m) ™ | S5 €S ek pletall )
o
=Tao (0, 8%,) D57 (x =) (6.58)

where
DS7(x—y)=i(2m)"® J d*k 8(k%)8(k?) e

is the positive frequency part of the Pauli-Jordan function of the massless
scalar particle.
The causal Green function of the graviton is defined as follows:

D%, oo(x =) ={0| T[£,.(x),,(»)]|0)
=i'Q2w)"* J d*pe "M, L (p)(pP—ie)”  (6.59)

or, by means of the differential operator I1 ., (7, 32,),
D po(x =) =10, ,0(0, 83,) D§(x — ) (6.60)
It is natural that Dg(x —y) is the causal Green function of the massless
scalar particle given by the standard form
D{(x-y)=i"'Qm)"* J d*k e T2~ jg) ! (6.61)
The retarded and advanced Green functions can be defined in the
following way:
D} (%) = 0(x)D,,,, oo (x) = D, oo (x) + DGy o (%)
Do (x) = =0(=x")Dpy o (X) = Dy () = D)o (%)

Hv,po

(6.62)

They satisfy the conditions
x*<0

Dilipe(x) =0 for {x2>0 x°<0

x*<0
0

Difaa(x) =0 for {x2>0 x>0
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Thus, we can see that all Green functions satisfy all requirements of the
local quantum field theory. The following correlations are valid for the
Green functions D¢, ,.(x) and D) .(x)

uv,po
D5, o(x)=0(x°) D) (x)+ 0(—x") DY) (x) (6.63)
. - 6.
D;, o(x) = 0(x") D)o (x) + 8(—x°) D), (%)

It is easy to observe directly that, similar to the case of the usual theory
of quantized fields, in the gravitational theory with the above-defined Green
functions (or, equivalently, with the quantum fluctuation of the space-time
metric) there exist ultraviolet divergences connected with singularities of
these functions, i.e., functions fo;fp‘,(x) and D;, ,.(x) not defined on the
light cone x*=0. To remove the ultraviolet divergences from our theory we
use the hypothesis of the existence of a fundamental length in nature and
change the Green functions in accordance with the nonlocal or stochastic

regularization method employed in Namsrai (19865).

6.6. The Change of the Newtonian Law and Form Factors of the Theory

To construct a theory with quantum fluctuations in the space-time
metric we introduce a fundamental length into the physical processes by
means of a change of the Newtonian law at short distances. We assume that
in the static limit the Newtonian potential is given by

o(n)=G(2m)" J- d’p e[ 0" 1L,,,,,5(p)Ip >/ 10

= G/4mr (6.64)

Such a definition of the potential leads to the idea that if one believes in
the changing of the Newtonian law at short distances due to the graviton
field carrying information about the space-time structure connected with
the existence of the fundamental length in nature, then the propagator or
the causal Green function of the graviton is inescapably modified and
in the general case should take the form

Diypo(x)=i7'2m)™" J‘ d'pe M, . (p) V(P P)(p*—ie)™" (6.65)
where V(p®P’) is an arbitrary function of the variable (—p2+ p®)l%, the
explicit form of which depends on the concrete method of the regularization
procedure. Here we call the parameter I, of the dimension of length, the
Sundamental length. If we employ the Pauli- Villars regularization method,
then

V(p*P)=(1+p*/A*)7",  wv=2
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where A= M = #h/lc plays the role of the universal mass value. Thus, a
multiplier of the type of

p X1+ p*P)7! or p2(1+p*P)?
may be obtained in (6.65) due to the following formal procedure:
(1 pP=+p)=pa+p? )7 (6.66a)
@) pT-(ITHp) T 2714 p) P=p (14 p°P) 7 (6.66b)

and so on.

Notice that, on the other hand, in accordance with the scheme formu-
lated in Efimov (1977, 1985) and Namsrai (1986b), formula (6.65) is
equivalent to introducing a nonlocal graviton field, and the vacuum expecta-
. tion value of its T-product operators gives just the modified propagator
(6.65) of the theory, where V(p*l?) is an entire analytic function of the
argument z = p°I* and decreases rapidly enough in the Euclidean direction
of the variable z - co,

We distinguish here some possible versions of the Newtonian potential
depending on the concrete form of the form factor of the theory. For
example, without loss of generality let us consider the Pauli-Villars regu-
larization prescription:

@(r) = (G/4mr)(1-e"""), for V,(p*)=(1+p’P)™"
@) = (G/4mr)[1—cos(r/IV2) e/ ™2, for Vy(p*I?)=(1+p*H™!
@3(r) = (G/4mr)[1-32+r/1) 7" for Vy(p’P)=(1+p*1*)~
@04(1) = (G/4mr){1-48+5r/1+(r/1)*] e} for V(p’I)=(1+p**)?
(6.67)

Now we calculate the Green function (6.59) at the point x*=0 for these
form factors V;(p°I*). Thus,

D% po(0) =3(Mp Moo + MoMp = 3o ) D (0) (6.68)

where the function

D,(0)=G(2w)™* J d*pp?V(p’P)

0 for V,(p*P)
2 for Vy(p°l?)
=G@m)x{" 2 6.
(2m)™x w2l for V,(p*) (6:69)

w17%/2  for V(p*P%)

is finite in the light cone x*>=0.
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The theory with entire analytic form factors was considered by Efimov
(1977, 1985) and Namsrai (1986b). Dineykhan and Namsrai (1989) present
the stochastic quantization method based on random field-like white noise
with nonlocal distributions leading to the appearance of entire form factors.
At present, a synonymous definition of the form of the form factors of the
theory is not known, and needs a deeper study in this direction as well as
another fundamental physical principle (or complete physical information
about possible verification of the Newtonian law at small distances).

6.7. Definition of Physical Quantities in the Theory with Quantum Metric
6.7.1. T-Product and Vacuum Expectation of Quantized Quantities

As shown above, introduction of the quantized field £,,(x) of (6.1)
into our scheme leads to a theory with a quantum fluctuation of the
space-time metric (6.33). We observe that in such a theory all physical
quantities become operator-valued ones through the metric tensor. Now we
address the question of how to define these quantities in space-time with
the quantum fluctuating metric. Our basic assumptions are the following:

1. Let F be any physical quantity; then, by definition, its value in
space-time with a quantum fluctuating metric acquires the form

F=F[e]=TF (6.70)

where T denotes the T-product symbol acting on the quantized fields 8,(x)
entering into the quantity F through the metric tensor.

2. The averaging procedure for the quantity F=F [£] is reduced to
taking its vacuum expectation value

Foy=(F[]), = (0| TF|0) (6.71)
We call the latter an averaged or observable value of the operator-valued
quantity F[e]. Now let us list some properties of the T-product operations
of operators £,,(x) [for details, see Namsral (1986b, Section 2.5)].
3. Let us introduce the operator R[&):

o

A 1 A A
Rle]= % ;J dix - j d*x, Ry(xy, ..., %) T[E(xy) - - - £(x,)] (6.72)
n=0 1.
The operator Ii[s] is defined by a set of functions {R,(x;, ..., x,)}. Let us
define the operation of conjugation
[, ()] =8,.(x)
Then, for the operator ﬁ[e] in (6.72) we obtain the expression

R*[e]= § %Jd“xl e J d*x, RE(x1, ..., x,)T[E(x)) - - - 8(x,)]

n=0 It
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. 4 Now we determine the operation of multiplication of two operators
R,[£] and R,[¢] of the type of (6.72) by definition:

Ri[e] ® Ry[¢]1% T{R,[¢]1R.[s]}

_ ]' 4 .. 4
—,g,,n!m!J‘dxl -de,,

XI d4y1 te "[d4ymRn(x1,'--,xn)

XRm(yla ot sym)T[g(xl) e E(xn)g(yl) e g(ym)]
(6.73)

6.7.2. The Operator-Valued Transformation of Coordinates and the Special
Theory with Quantized Field

To obtain the quantum fluctuating metric form (6.33) or (6.38), consider
the operator-valued transformation (1.3) and its Jacobian (1.10). As above,
the condition d*¢%/dr*=0 leads to the equation

d’x* ., dx* dx”

+4 = = 6.74
dr? Yu dr dr ( )
if we use of the definition
ax/\ a2§a }
yr = T{—— 6.75
e 9EY ax™ 9x” (6.75)

which ensures the symmetric property of the quantized affine connection
#4,= ¥4, In this case, the proper time (quantized) is defined as follows:

dr*=—g,, dx" dx” (6.76)
where
. 9€” off
8uv = naﬁT{ax“ axv} (677)

The latter yields the metric tensor (6.38).
The multiplication rule (6.73) allows us to establish the connection
between quantized quantities y5, and g,,:
P3u=1T{8"[98,./0x" +038r,/0x" — 38,/ 0x" ]} (6.78)
where we have used the definitions

3 B A 2 pa A 82 a B
(e rfi 2 (2]
x g™ ax* ax E* ox* ax” ax
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and

ax™ 9&* a&* ax” N
N =T\ 577 (=%
3E™ ax” axP g&P
since one can rearrange operators entering into the T-product operation.
In the relation (6.77) the inverse metric tensor (quantized) £ is defined as

ax” 9x”
gV = p*BT — 6.7
g 7 {6§a agﬁ} (6.79)

In the weak-field limit it coincides with the expression (6.42). Now it is not
difficult to reiterate all the considerations listed in Section 1 by using the
definitions {6.70), (6.71), and (6.73). For example, the expression (1.26)
and its averaged value (1.29) for the proper time in the quantum fluctuating
space-time metric acquire the form

AF=(~§,, dx" dx*)"?
and
A7, = (0|AF|0) = (1-v"/ ) *[1+3D,(0)] (6.80)

where g,,(x) and ﬁq(O) are given by (6.77) [or (6.38)] and (6.69), respec-
tively. In the given case, the square of the spatial distance is also defined,

di?= %, dx' dx’
with
Vi = T{8y — Goio/ Goot
and in the weak-field limit its vacuum expectation value is
di2 = (0]al 0y = di3(1+D,(0)) (6.81)

Space-time with a quantum fluctuation in the metric also gives rise to
the appearance of an additional potential

Gaf:%cz(l"goo_%égo) (6.82)
and to the changing of the particle energy
&= mc*(1-v/¢?) (= 0o)'? (6.83)

and their vacuum expectation values are given by the formulas (1.73) and
(1.75), where D(0) should be replaced by D,(0) defined in (6.69).
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6.8. Modified Gravitationil Theory with Quantuim Fluctuating Metric

It is not difficult to réconstruct the general theory of relativity with a
quantum fluctuation of the space-time metric. For this purpose, we use
results obtained in Sections 2-5, where the space-time metric has been
regarded as a stochastic quantity. In the given case, the general equivalence
principle is easily reformulated in accordance with the method expounded
in Section 2. For example, using the definitions (6.70) and (6.71), we can
obtain the analogous equation to (2.6), that is,

d’z* ., dz* dz’
T+ rfw D =
dr dr dr
where the quantized affine connection is given by
[7,=1T{G"[8G../02" +3G,, /92— 3G, /92" ]} (6.85)
and, by definition, the metric tensor CA?M,, reads

A AE” o€ . 0X%ox
GM,V(Z)_T{a " 9z }7’95 T{gaﬁ aZ aZ }

= 20(2) + 8,,(2) +iT{E0(2)E,,(2)} (6.86)

(6.84)

Here

ax® ax®

92" 32"

is responsible for a purely external gravitational field and becomes 7,,

when the latter is absent (z” = x”).
In the Newtonian approximation, equation (6.84) has the standard form

&
dr’

g?w(z) = naB

=%VHOO (6.87)

where
Hyo=—2¢n + 0o(2) +%T{€S(Z)€Op(z) +285,(2)}
and the space-time metric is
Goo=—1~26n +Euo(2) +3T{85(2) 0, (2) +285(2)}
In the latter case, the potential force is given by the vacuum expectation
value:

o = (O[F10) = (0| T{1 +3200(2) B0l 2) +485(2) 0, (2) — 26N }H0) - Fy
or
F,= [1 +3 Doo 00(0)+4Do Op(o) —2¢n]Fn (6.88)

where Fy = -V is the Newtonian force and D¢, 5(0) is the value of the
propagator of the graviton at the point x =0.
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Notice that due to the quantum fluctuation of the space-time metric,
a contribution to the red-shift value also occurs and its vacuum expectation
is
(Av/ v)g=dn(22) — dn(z1) +%[¢N(22) - ¢N(Zl)]2
~[N(2) = (2] =5D50, 00O ~1 =3 (22) + Thn (21)]
~%D(c)f70p(0)[¢N(Zl) —¢n(22)]
"%D(c)o,oo(zx = 2)[1— pn(22) —3dn(z1)]
Even in the absence of the external gravitational field defined by the
Newtonian potential ¢n(z), the red-shift contribution due to the pure
quantized radiation field £,,(z) remains:
(Av/ V)= %Déo,oo(o) _%DSO,OO(Zl —z)

which is the standard form in our scheme.

6.9. Tensor Analysis in Space-Time with Quantum Metric

By using the T-product definition of physical quantities, the tensor
analysis in space-time with quantized metric éw(z) and operator-valued
affine connection Fﬁy(z) are easily reconstructed in accordance with Section
3. As above, in the given case, we have at our disposal three systems of
reference:

(a) The local inertial system of reference £° with the Minkowski metric

Nap-
(b) The “quasilocal” or “quasi-quantum inertial” system of reference
x” with the quantized metric

(%)= M+ &, HIT[E0(x)E,,(x)]
(c) The general system of reference z* with the metric (quantum) CA?‘,,,.
Thus, the chain rule is valid for the force £ i
. az* 3z 9x” |
F(z)=T F* =T r
() {ax, (x)} {ax,, Py ff}

Since the operator-valued transformation matrix dx”/3£" with the quantized
field £,,(x) is given by the analogous formula (1.12), one gets

Fio=T{Z -z e - 117}

az*
ax”

azﬂ v (=3 Ay A v
=§ff+ S[iT{—3éo+3E0(x)e (x)— - -}

in the weak quantum field limit.
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Tensor algebra operations in our scheme are the same as in the previous
case (Section 3) with the exception of the lowering and raising operations
and of the covariant derivatives to be carried out by means of the quantized
metric tensor G and the affine connectjon [ v Tespectively.

It is natural to define the determinant of the quantized tensor G,,, by
the formula

G, =—(0|Det G,,,|0) (6.89)

since in the definition of G,,, the T-product symbol is involved.

(73 2]
6.10. Gravitational Effects and the Einstein Equation in Space-Time with
Quantam Metric

Mechanical and electromagnetic processes in the presence of gravity
with the quantized metric G,, may be considered by the same method as
in Section 4, where we should change the stochastic metric by the quantum
one GM,,, the affine connection I'} wv DY its quantized version 2 wv, and the
determinant of G,,, by its vacuum expectation form (6.89). Here the stochas-
tic averaging procedure is replaced by taking the vacuum expectation value
for quantized expressions which involve T-product operations.

To construct Einstein’s equation in space-time with the quantized metric
GM,, we use the definition of the curvature tensor (5.5), whose form in the
given case is

RA,(z)=ol",/02% —olA, Joz" + TIT 2,04, -0, 1% 1 (6.90)
By using this quantized curvature tensor, the Ricci tensor can be defined as

R, =R, (6.91)

1%
and the scalar curvature
R=T[G"R,.] (6.92)
For further consideration it is convenient to use the following
representation:
R)\[LV%—ZN)\[,LV%+T{G‘I]U[F I‘U __I"‘Yl V]} (693)
where the quantity N,\#W is given by (5.12) Wlth the metrlc G
order to define the vacuum expectation values of R“,,,M, s and R (or

R) we first give this averaging procedure for the affine connection r ~(2),
for which an expression of the type of (5.6) is valid:

A (2) =T+ T{=38(2) Y10 F 2872 (2)E5(2) Vi +388° 0.0
_Eép)\(z)%p;uv_*—ggg Ep;p,v+o(83)} (6'94)
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m the weak quantum field limit, where the quantities Yo: wl2), & A,,(z), and
E,...(z) are defined by (5.7) with £,,. Before averaging an expression of
the type of (6.94), it is important to notice that the well-known relation

<O| T{axé\/.t.v(x) a/\épé (J’)}IO>
= (8°/0x” 8y " )O| T[ £,.(x)E,5(y)]|0) (6.95)

holds for the T-product of quantized fields £,,(x). In other words, the
T-product in the Wick sense coincides with the T-product in the Dyson
sense, i.e., symbolically T = Ty. Thus, the following correlations take
place:
ad aA Vpﬂ'(x) G(XO)(; aAD“VpU(x)+0(_x0) axaADit—:)pO'( ) (69 )
.96
3,0\ D5) o (%) = 0(x°)8,0, Dy o (%) + 0(=X°)3,,, D51, o (%)

From the relation (6.95) and the explicit form of the causal Green function
(6.63) it follows that

(0| T[6,8,.(2) - £,5(2)]|0)
= -(21r)'4j d*p N, ..(pP) V(P P)p.(p*—ie)” (6.97)

Thus, the vacuum expectation value of (6.94) takes an analogous form
to (5.8):

O[F",(2)|0y =T (2) +2DE**(0) yp: s (6.98)
where
DZ*(0)=37"D,(0)

and D,(0) depends on the concrete form of the form factor V(p*?) of the
theory, which, in this particular case, is given by (6.69).

Now let us define the vacuum expectation values for the Ricci tensor
fi,m and the contraction Iééw. The former in the weak-field approximation
acquires an analogous form to (5.18), where the stochastic field ¢,,(z)
should be replaced by the quantized one £, (z) and the T-product operation
must also be involved. After taking the averaging procedure in accordance
with (6.59) and (6.95), the contribution to Rfm due to the quantized metric
GA,“, depends on the functions Dj, s5(0) and Dji,, ,....(0) defined
by the same formula (5.25), where one needs to replace 8,,=7,,,
D(O):>D (0), and

Dy(0)=D,,(0)=GQ2m)™ ‘[ d*pe V(p2IP?) <0 (6.99)
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Thus, after elementary calculations as in Section 5.3, we have
(0|R,..J0y = R%,,+(0]0,...[0) (6.100)
where

64 13

010,10y =¥ D, (0) N} o+ 2( p 6)D1q(0)1’u%+18D (0)

X[2Yai0n Vosn = Voumo Yesur = Your Yeinp ~2¥Vpiaa Yorun
+%‘YE;9¢A Yosur 980”(’)’,;;:;)\[‘?& - ‘Yp;m\r(,)fu)]
+3D,(0){F g0, (T ~TUY)
— 2D, =TS, — T T, — 3T — T 9]
+3g™ (TT L — TR} +3D,(0)g°
X {32 Voin Yosn = Vpioa Yasan) T AL 0 (Voo Vosiam = Ypioer Vpour)
+385¢ (Yer Vosuw = Yo Vo) IH+235D14(0)
X [318° Zu = 208 ~ 14(E% V1, +1085,8° ] (6.101)
where we have used the notation
Eon=8""NuMrn, G=g"
and have distinguished two types of summation over indices:
YusaYnipne = Mg Ym0 Y pspn or YaoaYosun = MasMvaYr,vsY oz
and
DAl =Y 0123 DAL = 8% 6 T3, TS,
since the Euclidean metric 8¢ = 8% possesses the property
ST =T" or SiTA =T

for any tensor quantities T” and T.’.
An analogous calculation yields

O|T[ G, R1|0) = R°g%, +3R°D,(0)m,... — 3D, (0)(2RS, —17,..R°)
+%D,(0)g%, R+ g (0| T[4, Mp5.10)
—8%,{8°%'(0|Qp10) — (0| T[ 8°F' Mp5.1|0)} (6.102)

where R°= 1*#' RS, and (0|Qs|0) is given by formula (6. 101). Therefore,
it only remains to calculate the term of the type of (0] T[e“,‘MEB ]{O), where
the expression MBB is defined by (5.19a) with the quantized field £,,,. Now
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we calculate the term
Hp.x = gOﬁ'B,«)I T[ gp.xMBB']lO)

Taking into account the explicit form (5.19a) for the quantized expression
th , we have

H’p'u = 2NA/3Vﬁ goﬁB <O' T[e §E, ]|O>+;gomg035 (Ol T[é‘uxN?;AvB’HO)
OM OBB g?;a«)l T[SuxAlB/\VB ]IO>

+g°‘* g (OI{T[Euxgna'] 8" = g0 T[8,E"1H0)

X (TS, —~TSI%y (6.103)
where f\;'gw, is defined by (5.21). We calculate each term in (6.103) sep-
arately. The first term gives

H,. =—lg°BB'N1,;y,3 3D, (0)(81,8%+ 8.8, ~3n*"n.)

150,008 (N pup+ Nipup =50, Nigap),
(NAB/_\B' =1""Nigup)

To obtain the explicit form of the second term H>, it is necessary to carry
out a long algebraic calculation, with the following result:

H, =558 8" (ngpMurhew + Mg Mus e = Mg Mux s
=N uMeaMxr — Np'p N8y Max ~ NpaNxMur — N xTMBeTur
+27g Mg Maw + Mg M) X Dy (0)
= 36014 (0)[48°8 ) — M (8°)° — 48000+ 20,8 W]
where
Bor =8 Mgy B =8N M B = 808V

Taking the vacuum expectation value for other terms in (6.103) is not
difficult. They are

H}. =15D,(0)g°%* g*"" g5, [(80.87 + 8567 — 41" ,..)
X(Yp;ﬁ’/\rﬂv ~ Yoiea %[E') + (SZ‘S: + Siaz ‘“%ﬂpa"hw)
X(Yp;ﬁvrgv)‘ - Yp;Bﬂ’rgz)]
Further, we assume that g,¢%“ =8, and therefore,
0 oo 1
&rol 6 =3Yn 08
with this expression, the term H,, takes the form
Hi,x =15§D~q(0)g03B OAV[‘Y;J. H:] A'Yz Bv+ Vx; H:] A‘)’p, Bv
“YusvaYn:88" " Yoe;va Yuu:B8
_%nux(yy;ﬂVYy;B’A - ‘Yy;Bﬁ"yZy;w\)]
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By the same method as employed above, the last term in (6.103) is easily
calculated:
H}, =3D,(0)g* {[g°" (Mo + Me Mo =37 Mer)
~gon(8)85+ 8587 — " )T gs —ThT50)}
—9D (O)EOW {41’}1.?((1—‘;79 Yn:88' F%vg'y-n;ﬁg)
~T0% Vit 5 Vs + T8 Vi)
R3-S0 | SN PONECS LN RN RN R AWREEY R R
~ M (CRAT 3 —T AT}
where
PR =0l s Tl =nuln

An analogous calculation may be made for the last term in (6.102). Thus,
all the necessary terms in (6.102) are calculated by using (6.101) and (6.103).
Now we are able to rewrite Einstein’s equation in space-time with the

quantized metric G . The expected formula for this equation is
T{R,, -G, R} =-8+GT,, (6.104)

wv 2

In accordance with the general covariance principle formulated in Sections
3-5, the energy-momentum tensor T,, in our scheme is defined as

A 9x* 9x® ax*oxP . [9g" 9&°

Tunl2) = T{az“ az” T"’*} T 9z* 92" T"‘ST(ax“ axﬁ)
Here the operator-valued Jacobian of transformation 9¢”/9x” is given by
(1.10) with the quantized field £ (x).

The vacuum expectation of equation (6.104) may be easily calculated
by using expressions (6.100) and (6.102). In the case of the quantum
fluctuating space-time metric the Bianchi identities (5.42)-(5.44) and the
coordinate condition (5.45) are also fulfilled if we choose the T- product
operation in the definition of the operator-valued quantities G‘” I’:‘w,
and R’“’ for example, equations (5.44) and (5.45) now take the form

T{R*" ~3G*"R}, =0, [=T{G*T),}=0

In conclusion, notice that Horowitz (1980, 1981) used an axiomatic
approach to the construction of an expectation value of the stress tensor
and obtained a nonlocal expression, which he then used as the right-hand
side of the Einstein equation (6.104). More recently, this formalism was
developed by Jordan (1986, 1987) (see also Biernacki and Krélak, 1986).
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7. PHYSICAL CONSEQUENCES OF THE THEORY WITH
STOCHASTIC AND QUANTUM SPACE-TIME STRUCTURES

As shown above, the introduction of the hypothesis of stochastic and
quantum fluctuating metrics into the physical theory leads to a change of
the particle mass [(1.76), (1.79)] and the Newtonian potential (6.67) and
also to the appearance of an additional force [(1.50), (1.55)] in the micro-
world. In this section we will consider other consequences of the theory of
interest.

7.1. Speculation about Force of Inertia

The origin of inertia presents one of the fundamental problems of
physical theury. Newton and Mach considered this problem in different
ways. Newton assumed that inertial forces such as centrifugal ones must
appear due to acceleration with respect to “‘absolute space,” while Mach
suggested that inertial forces are more probably generated by the general
mass of heavenly bodies. The difference in their assertions is not metaphy-
sical but physical, since if Mach were right, then a large mass would give
rise to small alterations of the inertial forces near it, while if Newton were
right, then such effects would not appear [for details and further discussion
see Weinberg (1972) and Bertotti et al. (1984)]. Here our goal is modest;
we consider only some possible explanations of the origin of inertial force
from the point of view of stochastic and quantum fluctuations of the
space-time metric.

We assume that, due to the existence of the cosmic background radi-
ation stochastic field ¢,,(x) [or quantized field £,,(x)], the inertial system
of reference is slightly changed [a useful discussion of such possibilities
was presented by Bertotti ef al. (1984)], in which there always appears some
additional small “potential” force

F9=-Vo =V, (7.1)

(Of course, the term ““force” used here is not in the direct Newtonian sense
and in general relativity it should be related to the gauge group concept,
as in all contemporary geometrized versions of Maxwell and Yang-Mills
gauge theories.) Where

é, = Ledo(x) +3e8(x) g0, (x)
and
&, = 3T[E5(x)+188(x)80,(x)]

in accordance with the existence of stochastic &,,{x) and quantum £,,(x)
fields, respectively. In the presence of a particle, it is suggested that both
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the distribution function 13(p2) in the correlation (&,,(x)&,(y)). and the
form factor V(p®)/p’ in the causal Green function (0|T[Z,,(x)£,.(»)]/0)
depend on the momentum variable p, of the particle and are located at the
point p = p,. With this assumption each particle, due to the stochastic (or
quantized) field ¢,,(x), generates around itself some “potential” force
proportional to its momentum p,. For this purpose, let us consider the
particular case when

V(p*)p > =(p—po) “[1+(Apo) *(p—P0)’17> (7.2)
where
Apy=m Av/#; po=mv/ h

Thén the “potential” force (7.1) when averaged takes the form
F,=+G(Q2m)~ f d’p p(p —po) ~*(8po)*[(Apo)* + (P~ po)’]

= F Gpo(Apo)/ 487 (7.3)

where the sign ¥ depends on the definition of the factor exp(Fiqx). This
“force”” has dimension of [ G/L*], where

G=6.67x10"""Nm?/kg’>, [p]=[L™"]
Thus, ¢ach particle undergoes a proper action with the *“force”
F= :':Gpo(&po)mz/"'sﬂ, Po= mV/ h

due to the stochastic (or quantized) background radiation field £,,(x).
When the particle is at rest, the force disappears and as soon as the particle
starts to move, the *“force” simultaneously begins to act on it. It is easily
seen that even in the macroworld this force becomes appreciable. For a
macroparticle it is reasonable to assume

[F|~ m>G/487(As)?, As=v At

where Af is a characteristic time during which the particle’s velocity is
noticeably changed. For example, let a particle with mass m = 10 kg move
with the change of velocity from zero to 1 m/sec during the time interval
At ~107° sec; then the expected inertial force becomes sufficiently large:

[F|=443 N
Notice that instead of (7.2), another form factor of the type
Vi(p*)/ P =p [1+(Apo) *(p—po)’]™", n=2

may be chosen, which leads to a complication in the calculation procedure,
but the result remains the same.
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7.2. Acceleration Mechanism of Cosmic Rays

Let us consider now other interesting problems, connected with the
origin of cosmic rays in high-energy astrophysics. The acceleration mechan-
ism that carries cosmic rays (particularly protons) to energies of 10°°-10> eV
in the primary cosmic radiation remains unsolved (Ginzburg and Ptuskin,
1976; Hillas, 1975). Namsrai (19865) attempted to understand this problem
from the point of view of the hypothesis of space-time stochasticity and
fluctuations in the metric.

We show that this problem may be easily solved by using the inertial
force (7.1). It is quite possible that cosmic-ray particles satisfy the equation
of motion

dv
== const- 7.4
7 const-p (7.4)

in accordance with the definition of inertial force (7.1) and (7.3). This
equation may be rewritten in the form

dE
—‘-1? =const- E

with tfié solution
E = Eyexp(const- t) (7.5)

By appropriate choice of the constant in (7.5), it may be shown that during
the time of evolution of the universe the cosmic-ray particle energy (mainly
proton) reaches 10'°-10*° eV [for details, see Sinha and Roy (1986) and
Namsrai (1986b)].

7.3. Quantum Mechanical Consideration

It turns out that our hypothesis of stochastic or quantum fluctuation
in the metric leads to some interesting consequences due to the fact that
the Hamiltonian of a physical system is changed in accordance with the
formulas (1.75) and (1.78). We consider here the latter case only. Thus, for
the form (1.18b) of distribution, the Hamiltonian of the system undergoes
the following change:

p°/2m = (p*/2m)(1 -5GI7?) (7.6)
where we have taken into account the quantity

Di(0)= G/
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for any distribution satisfying the -condition
@m™ f d*q Di(q*) =1

With the change (7.6), the Schridinger equation acquires the form
Ay +(C2m/B)E~U(r)—- V] =0 (1.7)
for the stationary states, where U(r) is the external potential field and

. B 5
V'=— —=GI?A 7.8
2m 12 (7:8)

Here
A=r"23(r%/or)/ar—r 2

is the Laplace operator written in the spherical system of coordinates and
L is the angular momentum operator.
As usual, the solution of equation (7.7) is presented in the form

=R(r) Y. (6, ¢)
where the angular part Y, (0, ¢) satisfies the equation
12y, =L(L+1)Y,,
whence its radial part R(r) = x(r)/r is defined by the equation
d*x/dr* +1(2m/ 8?1 -G (E-U)- L(L+1)r*]x=0

Due to the second term in (7.6) the energy level of an electron in an
atom undergoes an additional shift given by the formula

AE, = I dr 0% V' (7.9)

Here we have assumed that in the given case the perturbation theory is
applied, where V' represents a small correction (‘“disturbance”) to the
“unperturbed” operator H,.

It is interesting to calculate the correction to the Lamb shift AE(2S,,,—
2P, ,») due to a stochastic (or quantized) fluctuation in the metric. To define
this correction, we consider the unperturbed normalized wave function
written in atomic units

Ry=(1/vV2) e™*(1-1/2), Ry =(1/2V6)re™"?
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for the hydrogen atom (Z=1). Then taking into account (7.8) and
(7.9), we have

oo

AE (1)_‘G1~J‘ drr’ e "?(1—r/2)[d*/dr*+(2/r) d/dr]

o)
xe ?(1-r/2)=—5GI?

and

oo

AE (1)—5(24)'2GI“J’ drrie %y

0
x[d*/dr*+(2/r)d/dr—2r2]e"?r
e
Now the shift AE(2S,,,—2P,,,) in hydrogen takes the form, in natural units,
AE(2S,/,—2P, ;) = —13aGl "ma’h*/2=—-13GI">- Ry  (7.10)

where Ry = ma’/2#” is the Rydberg constant. The agreement between AE,,,
and AE,, in quantum electrodynamics within the present accuracy is
~107"" Ry (Erickson and Yennie, 1965; Lundeen and Pipkin, 1981); from
this we obtain the following estimation:

1=2107® ¢m

7.4. Relativity, Anisotropy of Inertia, and the Value of the
Fundamental Length

Owing to the above considerations, the stochastic (or quantized) nature
of the space-time metric at short distances, after averaging (or taking the
vacuum expectation) over a large scale, plays a role in the formation of an
anisotropy of the universe and, in turn, gives rise to a slight change of the
laws of motion of a particle in the inertial system of reference. It is natural
to assume that the appearance of anisotropy is caused by the additional
force obtained in the previous sections. In other words, this force may be
understood as the source of a small difference in the values of gravitational
and inertial masses.

On the level of the usual theory of gravity, in connection with the
verification of Mach’s principle of the possible influence of large mass
accumulation (for example, in the presence of the Milky Way) on the laws
of motion of a particle, experiments (Hughes ef al, 1960; Drever, 1961)
devoted to testing the existence of a small difference in inertial mass have
been carried out. Hughes and his team observed resonance absorption of
photons by "Li nuclei in a magnetic field. The experimental result is that
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if one can represent a nucleus of "Li as a proton with angular momentum
J =3which is connected with other nucleons in a central symmetric potential,
then the anisotropy of the proton mass Am must be equal to

AE =A(p*/2m)=~(Am/m)(p*/2m)<53x10"*'MeV  (7.11)

where p?/2m is the kinetic energy of the proton. Since p%/2m is larger than
1 MeV, this is reduced to the assertion that the anisotropy of inertial mass
is bounded by (Weinberg, 1972)

Am/m~10"% (7.12)

We know that in space-time with a stochastic (or quantized) fluctuation
in the metric the kinetic energy of the particle is changed in accordance
with formulas (1.75) and (1.78). This in turn gives an additional energy
shift (7.9) for atomic level in the stationary case. We assume that this change
of energy level in "Li is connected with the anisotropy of the proton mass
given by (7.11) or (7.12).

Thus, first we write the change of kinetic energy due to the stochastic
(or quantized) nature of the space-time metric by means of the anisotropy
of inertial mass

p*2m=P*/2m = p*/2(m—Am) = (p*/2m)(1 + Am/ m)
Second, this change is connected with the shift of the atomic energy level
given by (7.9). Now let us calculate this shift for the case of L=1, n=2,
Z =6. The wave function for the basic states, i.e., unperturbed energy level,
is

Yo =RorYim
where
R, =(1/2V6) e "*r
for Z = 1. For hydrogenlike atoms it takes the standard form
R, =/ (r)=N, . (2Zr/n)*F(-n+L+1, 2L+2, 2Zr/n) e Z/" (7.13)

where

N, =[QL+D)I Y{[(n+L)!]/2n(n—L-1)1}"*(2Z/n)*?

is the normalized coefficient (for details, see Landau and Lifschitz, 1963)
and F(a, c, z) is the degenerate hypergeometric function. For our case, the
expression (7.13) becomes

Jr=(1/2V6)Z**r e 12 (7.14)
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With this radial function, the energy shift due to a stochastic (or quantized)
metric is easily calculated; the result reads

s

AE%:;%GI”ZZSJ drr’ e %2

0
x[d?/dr*+2/r)d/dr—2r"*]re #/?
=—33:Gl°Z°(1+ Z) (7.15)

for the distribution function D,(g?) satisfying the condition (1.18b). The
formula (7.15) is expressed in atomic units. Thus, assuming Z =6, we get

AESR=-3GI? Ry (m,/m,) (7.16)

where hc- Ry =m, e*hc/4mh’>=13.6 eV, and a =0.529 x 10~% cm is the Bohr
radius. On the other hand, relation (7.16) is bounded by the experimental
value (7.11). Therefore, one can obtain the following estimation on the
lower value of the fundamental length:

I=x107% cm (7.17)

Thus, we see that the anisotropy property of inertia is very sensitive to the
quantum (or stochastic) fluctuation of the space-time metric at short dis-
tances. Of course, the latter gives rise to the appearance of the slight
anisotropy of the universe. On the other hand, from results given in Namsrai
(19864a) it follows that

I=10*cm
Therefore, the value of the fundamental length lies in the interval
10 %P=1<10%cm (7.18)

This result is crucial in our scheme.

7.5. Derivation of Upper Bound on the Value of the Fundamental Length
from High-Energy Physics and Its Possible Scales

It is well known that the high-energy colliding-beam experiments allow
one to probe very short distances and in turn space-time structures. The
main components of the colliding-beam experiments are storage rings in
which high-energy particles are accelerated to expected limiting energies.
Among them, e"e” and pp beams are crucial for space-time and matter
structure investigations. Major experiments in these directions may be
undertaken upon the completion of the LEP electron-positron accelerated
machine with collison energies of around 100 GeV at CERN, the Tevatron
collider complex at Fermilab, and others still under construction, including
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the proposed U.S. Superconducting Supercollider (SSC), an 85-m, ring to
provide 20,000-GeV (20-TeV) proton beams, and the 3-TeV superconducting
accelerator and storage complex (UNK) at Protvino, Moscow Region,
USSR.

In this section we attempt to obtain the upper bound on the value of
the fundamental length from high-energy experimental data, and speculate
upon the possible existence of the energy scales Egyw ~100 GeV and Enw
~5TeV of the unification of electromagnetic and weak, and weak and
nuclear processes, respectively. The former is called the electroweak
unification (interaction), following S. Weinberg, A. Salam, and S. L.
Glashow. The latter possibility is very interesting for the experimental
verification of the theory.

In order to deal with the theory of fundamental length, we consider
the simple form of the Lagrangian function (Namsrai, 1985)

L =Lor(x)P}, (%)
where ¢r(x) is a massless scalar field and
#? =0 cosh?(IV—10)

This type of momentum operator % was also discussed by Fujiwara (1980)
from the point of view of three-dimensional quantized space. The equation
of motion of this field is obtained in the usual manner (the principle of
stationary action)

O cosh*(IV—)gr(x) =0 (7.19a)
or in the massive particle case ,
(O—-m?) cosh’[1(— 0+ m*)"*1pg(x) =0 (7.19b)
For the photon field A, (x) without the source field J,(x),
Lem=—HP,A(x)T (7.20a)
and
O cosh’[IV-TI]JAZ (x)=0 (7.20b)

The applicability of the choice of Lagrangian form for the electromagnetic
field has been discussed by 't Hooft and Veltman (1973).

We see that these equations are differential equations of infinite order,
i.e., they are in fact integral equations. In order to solve the Cauchy problem,
we have to know the values of the functions ¢g(x) and all its derivatives
at the initial moment of time. Thus, unlike the usual fields obeying differen-
tial equations of finite order (in most cases, second order), we obtain new
objects—nonlocal (extended) fields of the Efimov (1977) type. We denote
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these objects by index R; for example, ¢r(x) and A,’f(x) are extended
scalar and photonlike fields, respectively. Here, we are interested only in
the Green functions of equations (7.19b) and (7.20b).

Thus, our formalism coincides with the usual scheme of quantum field
theory in the free particle case and therefore gives no new information in
this case. However, in the virtual states of the particles, the formalisms are
essentially different. We now consider this situation. The main object of
the virtual state of a particle is its Green’s function (or propagator). As is
well known (see, for example, 't Hooft and Veltman, 1973), the propagators
are minus the inverse of the operator found in the quadratic term of the
free Lagrangian, for example,

F=Lo(x)(O0-mY)e(x)=>(m’+k’>—ig)”"
This rule reads for the Lagrangian (7.20a)
DR (k) = g,./[(k*— ig) cosh*(IWk?)] (7.21)
On the other hand, the Green function Df,,(x) is the solution of the equation
[ cosh®(IV—[1) DR, (x) = g,.,6(x) (7.22)

The solution [the causal Green function D,’fy(x)] to this equation is given
by the contour integral:

DR(x)=—g,D"(x)

= —gwi—‘(zﬂ)-“J d*ke™ ™ (K2~ ig) ' cosh (k%) (7.23)
The contour of integration ¢ is chosen as in the usual local theory and is
determined by the “ie rule”.

It is important to notice that in our scheme ultraviolet divergences are
absent, since DJ,(0)<0; for example,

DR(0)= —i_1(27r)'4J d*k (k*—ig)™" cosh™X(IWk?) < oo

[

Indeed, after transformation to the Euclidean metric, we get

DR(0)=-7*(2mw)™* Jw du cosh™ *(IVu)

0

o0

= -27227)"* J dx x cosh™?(Ix)

0

=—in2 7727
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At the same time as the photon propagator (7.23), the Coulomb law is

also changed. Thus, the potential of two interacting charged particles
acquires the following form in the static limit:

Uc(r)=e*(2m)~° J d’pp e ™ cosh”z(l\/l?)

= (e*/2m7r) r

dx x ' sin{xr) cosh™?(Ix) (7.24)
4]

From this, it is easy to see that Uc(0) <o0; indeed,

Uc(0) = (e*/277) J

0

dx cosh™?(Ix) = (=1/27%1)e?

We now give the Mellin representation for the propagator lﬁ,’f,,(k) of
the photon field. For this, making use of the expansion for cosh™ x,

cosh?x=4/(e¥+2+e?*)=-4 Y (~1)"ne ™
n=1

(7.25)
we get
00 © 2 k
COSh_2 x=4 Z (_1)n+1n Z (_l)k_(_n"i)_
n=1 k=0 k!
°° 1 (" dp (2nx)*

=4 -1 ly— J‘ —_— 7.26
nél -1 n2i —p+ico Sinmp ['(1+p) ( :

where 1> Re 8 > 0. Using the properties of the I'(x) function, it is possible

to move the contour of integration in expression (7.26) to the left through
the point p = —1, and in the obtained results one can take

oc

(1) = (1-2) (-1~ p)

n

since Re(—1—p)>0, where {(z) is the Riemann zeta function having a
single pole at the point z=1 and satisfying the following conditions:

27" T(2)¢(z) cos hmrz = w*¢ (1 - 2)
£(2m) =2"""17"|B,,u|/ (2m)!
{(—2m)=0

g(l_zm)':_BZm/zm, m=132a 33
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In particular,
£0)=3  {(-1)=-By/2=—1;

Here B,, are the Bernoulli numbers; for example,

As a result, we obtain

—y—ioo

o
cosh_2x=%J' B S

i Psinap T(1+p)
where
v(p)=4-2°(1-2"""){(-1-p) (7.28)
In particular,
v(-1)=-1, v(0)=0, v(1)=0, v(2)=2

After these simple calculations we have the following Mellin representa-
tion for the photon propagator:

-y {00

P(k*—ig)??, 2<y<1

(7.29)

= 1 v(p)
Y e
wk) = =g, 2i ) i psinarp-F(1+p)

Representations (7.27) and (7.29) are very convenient for the purpose of
concrete calculation. For example, by using the representation (7.27), the
expression (7.24) for the potential U (r) is calculated explicitly and takes
the form

N I s

27r 2i —ytico psin mp-T(1+p)
I 14
xsin‘imrl"(p)(;)

! IJ’_Y_Md —”(E—)«—(—IY, 1<y<0 (7.30)

T 2m?r2i —ytico p2pcos%7-rp r

Here the following integral is used:

J- dx x*~'sin ax = a *T(p) sin } mp, a>0, 0<|Rep|<1
]
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Two cases should be distinguished: I/r>1 (i.e., r=>0) and I/r<1 (r—»0).
In both the first and second cases it is necessary to move the contour of
integration in (7.30) to the left and to the right, respectively. Thus, we have

Uc(r)=—=(e*/2m*r)[—v(=1)(I/r)" +30(=3)(I/r) >+ I'(r/ )]
=—(e*/2m7° 1) — e*r*I%/ 144+ I(r/])
I(r/l)y=T7e*7*r*17°/[(24)*100] (7.31)
for r< 1l and
Uc(r)=e*/4ar

for I <r. The function Uc(r) at r =0 represents the so-called proper electro-
static energy of the electron in the classical field theory. As seen above, in
our model the proper energy of the electron is finite, U(0)~ e°/L This
result coincides with the well-known classical electrodynamic value Uc(0) ~
e’/ a, where a is the electron size (classical). In the last case it is usually
assumed that the electron is a pointlike object with radius a. However, in
our case there is an interesting possibility: due to the minus sign of Uc(r)
for r=0 (see Figure 1a) two electrons may form a whole bounded state,
i.e., unlike the usual classical theory, in quantized space-time the electrical
repulsion between two electrons becomes an electrical attraction at small
distances.

On the other hand, at distances r> I our potential U-(r) reproduces
exactly the Coulomb law [without any terms of the type e*(I*/r*), . ..]. This
means that quantum electrodynamics is a beautiful local theory up to dis-
tances /; if the true length is ~107** cm, then QED becomes local once and

for all.
U lr) e e e* ey
| ‘ s _>>~NV\/\'< >/VV\NV<—-S
| I e e- e e”
| |
i |
Y i
! t r - e et 2,
s _>.N\~v~< >.~ww<-— s
e- e- er P

b}

a)

Fig. 1. (a) Illustration of the change of the Coulomb potential due to quantized space-time
at short distances. (b) Diagrams of electromagnetic leptonic processes giving the main contribu-
tion to the scattering value at high energies.
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An analogous calculation for equation (7.19b) gives in the Euclidean
metric

D%(p) = (m’+p?)~" cosh[I(m’+p*)"/?] (7.32)

and therefore the causal Green function of a scalar massive particle
Dg(x)=(2m)™" J d*pe " Di(p) (7.33)

is finite at the point x =0. Indeed, the function D%(0) in the Euclidean
metric is given by

o

(0) = n*(2m)~* J' duu(m*+u)~" cosh™[I(m*+u)"?]

0

1 IJ'"V_M) v(p) m* ,T(—=1-3p)

T 1672 2i —yrico P sin ap T(1+p) T(1-1p)
m> 1 {777 w(p) (mD)?* _ ~
=——§”.J’ p——bo S g7 (24 )
47?21 ) 40 sinap I'(1+p)
1 mz —2§-2 ' 1
=§;5[1n2-m I+ (0)+Inml—-¥(1)-1]3<y<2, ¥(1)=~-C

where C =0.577 is the Euler constant.
Similarly to formula (7.29), the following Mellin representation holds
for the function (7.32):

~”(p)=l,{ﬁy_m dp—————*—v(p) P(m*+p*—ie)??7!,  2<y<l
R 2i ) yriw  Sinap-I'(1+p) ’
(7.34)

Here v(p) is given by formula (7.28).
As in the case of the Coulomb law, in the given scheme the Yukawa
potential between two scalar particles acquires the form

Uy(r)=g’2m)"" J d’p (m*+p») ™" e"™ cosh [ I(m® +p*)"*]

& m J"" ()l (Lm)“"”“
20N Er 2i )i psinvrp-F(H-p) r

xcos ir(p — 1) (3p) Kps1y,2(mr), d<y<3 (7.35)

where K, (x) is the MacDonald function of vth order. This representation
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is valid for the case r =0 and has only a single pole at the point p =0. The
calculation of the residue at this point gives

Uy(r)=(g*/4mr) e™™ for r#0 (7.36)

In order to calculate the value Uy(r) for r > 0, we use another representation
obtained directly from the first equality in (7.35):

lin& Uy(r) = U(0)+ P UL+ O(r*)
where

2 o0
U0 =3 J doe x*(m?+ x7) " cosh ™[ (m?+x7)"/7]
0

mg® 1 J‘” v(p) _(ml)” TGT(-3-}p)

T 477 2i ) Psinap T(14p) T(1-1p)
2 2 2
g mg 7 g 22
=2 % e (ml + O0(m?l 7.37
2071 dm 4 Mg (MDEG)TOmL) (1372)

2 1 o
UW0) = _ng_z — J dx x*(m*+x%) " cosh [ I(m’>+x*)"/?]

g 11 .1 J e v(p)(mly  TEI(-3-1p)

232" 20 e Psinmp-T(14+p) T(1-1p)

N

2.2 2.3
g gm* g'm
=T 1aaF 877 24y TOMD) (7:376)

Here {(3)=Y,_, (1/n*) = 1.20205690.
Combining the formulas (7.36), (7.37a), and (7.37b), we have

— g /21— (m/4m)g” —img*(ml/ w*){(3) + O(m* )
Uur)={ -r¥(g?/144+ N) for r=0 (7.38)
(g/4mr)e™™  for r#0

where
N =(g*/8%*)(m?/ 1)+ (g*/24=)m>+ O(ml)

Thus, we s¢é that the Yukawa law is valid up to the point r = 0, and therefore,
the corresponding theory is local almost everywhere.
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Now we discuss equation (7.19b). It has three solutions:

(1) p*=—m? at which cosh0=1

(2) p*#-m?, cosll(-p’-m?)"*]=0, p’<-m’ (7.39)
(3) Trivial solution ¢ (p)=0, for —m*<p?

The first corresponds to the free scalar particle with mass m and second to
the family of particles with masses

M, ={m*+[(=/DE+n)T}/?, n=0,1,2,... (7.40)

In the second case the initial particle becomes a virtual one, but at the same
time a family of particles is generated due to the quantized space-time
properties at short distances. On the other hand, these new generated
particles may be understood as excited states of the initial particle with
discrete energy levels

E,=(E}+EH'? (7.41)
in quantized space-time, where
Ey=(m*+p))"%,  E.=(=/D(+n)

It is not difficult to construct finite quantum electrodynamics (Namsrai,
1985) with the propagator (7.21) in accordance with the prescription
developed by Efimov (1977, 1985) and Namsrai (1986b). Here we obtain
only an upper bound on the value of the fundamental length from experi-
mental data on high-energy scattering processes. Since electromagnetic
processes of the type e e >e e, e'e”>e’e”, and efe > pu u” are
described even by a low order of the perturbation theory up to, at high
energies, the recently attainable one (see Figure 1b), the ratio of cross
sections calculated by the usual local and nonlocal theories discussed above
is given by

Crontoe/ Tioe =[ V(~sP) P =[1-4v(2)sP’F ~1-2sl?
where v(2) is given by the expression (7.28), and
s=(pi+p)’=QEy =W’

W =2E is total energy in the center-of-mass frame of reference.

An estimation based on this formula is very simple, and using present
experimental data (see, for example, Bartel et al., 1980; Berger et al., 1980)
we have

Is10 "% cm (7.42)
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Of course, there exist other bounds on the fundamental length [see, for
example, Bracci ef al. (1983) and previous sections].

Now we determine the energy scales at which different forces are unified.
This is also possible in our model. For this purpose, first we construct the
weak potential between two particles. In accordance with the traditional
method, we do this in the following manner:

DSy p) = (840 — pup/ miw)(miy+p*—ie) ' = g,./mb

Myy >0

or in the language of Feynman diagrams, the intermediate vector weak
interaction transforms into the four-fermion weak interaction, i.e., two
vertices of interacting fermions linked with the propagator of the intermedi-
ate boson at the limit my — c© become one vertex with four fermion lines
entering into it. Upon this, the weak potential acquires the form

US(r)=gw(2m)” J d’p e " (mYy +p°) " (8;— pip;/ M)

= (Gr/V2)(2m) 78, J d’pe®
where Gr/v2=g%/m?%. It is a local case. In our model it takes the form

Uw(r) = (Gp/V2)(2m)~ J- d’p e cosh *(IVp’)

=(Ge/V2)(1/24Pr) JOO dy y sin(ry/1) cosh™ y

= ~(Gp/V2)(1/27*I*r) d(wz/2 sinh }nz)/ dz
=—(Gp/V2)(1/4xlr)
x [1/sinh 7z — 47z cosh(3mrz)/sinh® L z]

where z=r/l It is easy to verify that this potential is finite at the point
r=0. For r-> 0, we have

Uw(r)=(Gr/v2)(1/24P) = (Gr/V2)(w?/2°I°)(31/180)r*  (7.43)

We now assume that the electrostatic energy Uc(0) and the weak-static
energy Uy (0) of the electron coincide with the absolute value at the energy
scale given by E,, = #/l.,.c. Here we call E,, the electroweak energy scale
at which electromagnetic and weak interactions are unified. Thus, from
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(7.31) and (7.43), we have
(€*/271,,) = (Gr/V2)(1/2413,)
or
E..=(a/Gg)*(48v2/7)"/*=118.1 GeV

where @ = /47 and E,, = #/1,,c. We see that the obtained energy scale
is closer to the unified scale of electroweak interactions due to S. Weinberg,
A. Salam, and S. Glashow, i.e., it coincides roughly with the mass of the
W* and Z° bosons.

Analogously, comparing the values of the weak-static energy Uy (0)
and strong Yukawa energy Uy(0) at the same energy scale E,, = #/l,.¢
(we call this the nuclear-weak energy scale), we have from (7.38) and (7.43):

(8%/27L,) = (Gr/V2)(1/241,,,)
or
E,.=(f/ Gg)V*(48V2/ 7)"*=5353 GeV
where
f=g/4n~15,  E,,=h/l.c

It is interesting to notice that the hypothesis of quantized space-time
may indicate the energy scale of a grand unified theory linking weak, strong,
and electromagnetic interactions at very high energy. It is no exception that
this unification takes place at the energy scale E,, =5353GeV (or,
equivalently, at the distances [ ~4x 107" cm), which is much lower than
the energy scale 10" GeV discussed in the grand unified theory.
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