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In this review we present a simple method of introducing stochastic and quantum 
metrics into gravitational theory at short distances in terms of small fluctuations 
around a classical background space-time. We consider only residual effects due 
to the stochastic (or quantum) theory of gravity and use a perturbative stoch- 
astization (or quantization) method. By using the general covariance and corre- 
spondence principles, we reconstruct the theory of gravitational, mechanical, 
electromagnetic, and quantum mechanical processes and tensor algebra in 
the space-time with stochastic and quantum metrics. Some consequences of the 
theory are also considered, in particular, it indicates that the value of the 
fundamental length 1 lies in the interval 10-23 ~ 1 ~  < 10 -22 cm. 
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PREFACE 

Recent developments of  the experimental  technology of high-energy 
physics permitting one to probe deeper and deeper  into matter up to 
distances of  10-16-10 - iv  c m  (even - 1 0  -is cm, if energies can be achieved 
of up to 20TeV in the center-of-mass system, using the proposed U.S. 
superconducting supercollider complex) and theoretical work devoted to 
the construction of a unified field theory of elementary particle forces, 
including gravitation, have resulted in a deeper  understanding of the space- 
time structure in the microworld. Among the proposed forms of space-time 
in the microworld [for example,  the concept of  superspace and pregeometry,  
lattice (discrete) and cellular structures of  space-time, higher-dimensional 
geometry, etc.], an important  role is played by stochastic or quantum 
space-time. This idea is based on the fact that the quantum fluctuations in 
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geometry are inescapable if one believes in the quantum principle and 
Einstein's theory. 

To realize these possible structures of space-time at short distances we 
present a working model of stochastic and quantum fluctuations of the 
space-time metric and consider their consequences. This review deals 
specifically with a concrete mechanism for space-time metric fluctuations 
due to background stochastic and gravitonlike quantized fields. Our con- 
struction of the theory is based on the general covariance principle, which 
allows us to obtain physical equations and quantities in space-time with 
stochastic or quantum fluctuations in the metric. At the same time, our 
scheme may be useful for taking into account the gravitational force in 
particle physics phenomena, by means of stochastic and quantum fluctu- 
ations in the metric. 

It is generally accepted that quantum or stochastic gravitational effects 
show up essentially at the so-called "Planck mass" of about 1019 GeV [the 
"Planck length" is IPI----- (hG/c3) 1/2= 10 -33 cm]. From the practical point of 
view this length is so small that the contribution made by the quantum 
gravitational effect to any physical quantity is in fact negligible at present 
attainable energies. However, from our considerations it is clear that between 
distances of 10  -33 c m  and 1 0  -16  c m  there may exist some domain in which 
stochastic and quantum structures of space-time may be manifested. This 
domain is characterized by the length I ~ 10-23-10 -22 cm. 

The purpose of this work is modest. We consider only residual effects 
due to the stochastic (or quantum) theory of gravity, based on the assumption 
that, at short distances, the space-time metric fluctuates (or is quantized) 
and we use the perturbative stochastization (or quantization) method. It 
seems that the true quantum theory of gravity is not perturbative. It is 
argued that quantum general relativity may still exist because strong-coup- 
ling effects at short distances contradict the assumption that quantum 
geometry may be understood in terms of small fluctuations around a classical 
background space-time. 

This review consists of seven sections. In accordance with the general 
covariance and correspondence principles, a theory of gravitational, 
mechanical, electromagnetic, and quantum mechanical processes and tensor 
algebra (Sections 1-7) is reconstructed by using the concept of stochastic 
and quantum fluctuations in the metric. 

Physicists concerned with condensed matter may be interested in the 
discussion of the physical consequences of introducing stochastic and 
quantum fluctuations in the metric, and of obtaining lower and upper 
bounds on the value of the fundamental length. The central matters are the 
general covariance principle, tensor analysis with stochastic and quantum 
metrics, the T-product definition of geometric quantized objects, stochastic 
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quantization with distributions, and change of the particle mass and of  the 
Newtonian potential due to stochastic (or quantum) fluctuations in the 
space-time metric. 

NOTATION 

Greek (a,/3, % . . . )  and Latin letters (i,j, k,.. .) run over space-time 
coordinates 0, 1, 2, 3 and over spatial coordinates 1, 2, 3 only. 

The Minkowski metric is defined as 

r / ~ = O  for /~r v 

--T~00 = 711  = 7 2 2  = 733  = 1 

The product  of  two four-vectors p and q with components 

p=(po, p)=(po,pi), q=(qo, q)=(qo, qj) ( i , j  = 1, 2, 3) 

is defined as 

Pq = 7.~,p~q " = p.q~' = -poqo + (pq) = -poqo + plql + paq2 + p3q3 

Summation is carried out by repeating indices, omitting the symbol of 
summation. Sometimes the Euclidean metric 8 ~ = 8 ~  

8 ~  =0,  /x~ v 

844 = 811 ~ 822 = 833 

is used. 
The equivalent notation 

f(x) =f (x0 ,  x) = f (xo ,  x,) 

g(p)=g(po,p)=g(po,Pj) ( i , j  = 1, 2, 3) 

will be used for the functions f(x) and g(p) defined in four-dimensional 
space-time and momentum space, respectively. Moreover, the following 
notation is clear: 

f d4xf(x)= I dxodxf(xo,x)= f dxf(x) 

In this review we use the system of  units (with some exceptions) 
in which the light velocity c and the Planck constant h divided by 27r 
(h = h/2~r) are equal to unity, i.e., h = c = 1. 

INTRODUCTION 

At present, much attention is being paid to the study of space-time 
properties at short distances. This results from the fact that, first, construction 
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of the unified theory of elementary particle forces including gravitation 
requires a deeper understanding of space-time structure (high-dimensional, 
stochastic, and quantum, etc.) at very high energies (or, equivalently, at 
small distances), and second, advances in high-energy experimental tech- 
nology allow us to probe a very small space-time region step by step which 
is defined by a parameter l with the dimension of length. From the experi- 
mental data (Ting, 1982; Barber et al., 1979a, b, !980; Bailey et al., 1979; 
Bartel et al., 1980; Berger etal . ,  1980) on testing locality properties it follows 
that our usual space-time concept is valid up to distances of l~  < 10  -16  c m  

(Kinoshita, 1979; Lautrup et al., 1972; Namsrai and Dineykhan, 1983; 
Namsrai, 1985; also see Bracci et al., 1983, 1987; Li, 1982; Dineykhan and 
Namsrai, 1986b; Kirzhnits, 1967). 

On the other hand, it is indisputable that phenomena in the microworld 
are quantized, i.e., their properties are described by quantum probabilistic 
laws, while the space-time structure connected with them becomes con- 
tinuous, at least up to the above-mentioned distances. The structure of 
space-time and the physical phenomena within it enter inseparably into 
human cognition, and their interrelations are those of dialectical unity. This 
unity gives rise to some hope that the quantum and stochastic natures of 
space-time properties can exist in the microworld and be discovered ulti- 
mately. Given this assumption, the following question arises: At what 
distances do quantum and stochastic structures of space-time start? This 
has become more pressing in the light of the development of unified ways 
of describing the fundamental forces in nature. Although the force of gravity 
is extremely weak with respect to electromagnetic and weak (or electroweak) 
and strong forces between elementary particles, it is still nonzero, so that 
as increasing energies probe deeper and deeper into matter, a level eventually 
should be reached where quantum gravitational effects appear. This is the 
so-called "Planck mass" of about 1019 GeV (the "Planck length" Ip1 = 

( h G / c 3 ) l / 2 = l . 6 2 x  10-33cm). It is not to be ruled out that between the 
distances 10  -33 c m  and 10 -16 cm there may exist some oasis in which the 
stochastic and quantum structures of space-time may be manifested. As will 
indeed be shown below, this expected oasis exists, and the value of the 
fundamental length lies in the interval 10-23-10 -22 cm, the upper limit for 
which was obtained in Namsrai (1986a, 1988). 

The idea of a quantum and stochastic structure of space-time has been 
discussed by many authors, particularly beginning from the early stages of 
the development of field theory and the work devoted to the construction 
of a finite theory of quantized fields free from ultraviolet divergences. 

In the theory of quantized and stochastic space-times it is usually 
assumed that there is no exact conceptual meaning of definite space-time 

A q  S points, i.e., the components of coordinates x ,  and x ,  in the corresponding 
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spaces do not commute, 

, x,,] ,~ 0 for ~ v  [ ~  ~q 

and are distributed with a probability measure w(b~/12),  where x~ = x~+ b~ 
consists of two parts: a regular part x~--(Xo, x) and a stochastic part 
b~ = (ib4, b) (for details, see Namsrai, 1986b). The theory of quantized 
space-time was first discussed by Snyder (1947a, b) and Yang (1947), and 
subsequently developed by Kadyshevsky (1959, 1962, 1980), Gol'fand (1959, 
1962), and Tamm (1965) (also see Leznov, 1967; Kirzhnits and Chechin, 
1967). For discussion of various theoretical ideas of space-time structures 
in the microworld, see Blokhintsev (1973), Prugove6ki (1984), and Namsrai 
(1986b) (where earlier references can be found). 

Among different possible space-time structures [quantum or discrete 
(Wilson, 1974; Lee, 1983; Friedberg and Lee, 1983; Fradkin and Tseytlin, 
1985; Yamamoto, 1985; Banai, 1984, 1985; Fujiwara, 1980), foamlike 
(Wheeler, 1964; Hawking, 1978, 1983; Strominger, 1984; also see Misner 
et al., 1973), code (Finkelstein, 1969, 1972, 1974), cellular (Cole, t972; 
Kiriltov and Kochnev, t987), and so on] at short distances, the stochastic 
or fluctuational character of space-time may become the most probable 
candidate and the natural arena of future physical theory. Indeed, if one 
believes in the quantum principle and Einstein's theory, then stochastic or 
fluctuational properties of space-time should inevitably appear in the micro- 
world. A stochastic space-time, which can be used in constructing theories 
of elementary particles, was first considered by March (1934, 1937), Markov 
(1940, 1958), and Yukawa (1966). Some attempts were undertaken to 
construct quantum field theory in a stochastic space-time (Markov, 1959; 
Komar and Markov, 1959; Takano, 1961, 1967; Ingraham, 1967; Blokhint- 
sev, 1973, 1975, and references therein). Subsequently, this problem was 
discussed by Roy Choudhury and Roy (1980), Roy (1979, 1986), Cerofolini 
(1980), Prugove6ki (1984), and Asanov et al. (1988). Mathematical spaces 
with a stochastic metric were considered by Frederick (1976) and Sinha 
and Roy (1987). A formal definition of a linear space with a random metric, 
mainly in the Euclidean case, was given by Menger (1942, 1949), Sherstnev 
(1963), Schweizer (1967), and Schweizer and Sklar (1983). Prugove6ki's 
(1984) monograph is devoted to a consistent unification of relativity and 
quantum theory based on stochastic spaces. The two-point correlation 
function of metric fluctuations in de Sitter space was calculated by 
Antoniadis and Mottola (1986). 

Stochastic or quantum geometry plays an important role in representing 
gauge theories by random surfaces and strings (Polyakov, 1981a, b; Gomez, 
1982) and in the construction of a unified theory of elementary particle 
interactions based on the theory of strings and superstrings [see, for details, 
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Green et al. (1987)]. For the practical realization of the idea of the stochastic 
and quantum characters of space-time we distinguish two approaches: the 
first is based on the assumption that quantum and stochastic properties of 
space-time can manifest themselves at the stage of arithmetization of events 
(or all reality is subject to an intrinsic stochasticity inherent in the measure- 
ment process caused by the stochasticity of space-time), and the second 
deals with random metrics. Our previous work (Namsrai, 1986a, b, 1988) 
belongs to the first approach and is devoted to the study of physical processes 
by means of quantum and stochastic space-times with coordinates ~ and 
x~, which have played the most important role in constructing the nonlocal 
theory (Efimov, 1977, 1985) of quantized fields and were given by the very 
nature of stochastic quantum mechanics (Nelson, 1967; Guerra, 1981), 

Stochastic and quantum metrics are considered on a much deeper level, 
where one should take into account the gravitational effects connected with 
introducing stochastic and quantum space-times into physics. The present 
paper is devoted to the study of this problem. Here we reconstruct the 
theory of mechanical, electromagnetic, and gravitational processes from the 
point of view of stochastic and quantum fluctuations of the space-time 
metric. By analogy with Einstein's idea of the unification of space and time, 
which led to the appearance of the parameter /3 = (1-v2/c2) -1/2 in the 
theory, in our scheme all physical quantities depend on the fundamental 
ratio f ( l ~ j / l  2) with some function f defined by a concrete method of 
introducing stochastic and quantum properties of the space-time metric. 
Moreover, a deeper connection between the quantum nature of geometry 
and gravitonlike quantized fields is shown to exist, and upper and lower 
limits on the value of the fundamental length l are also obtained, that is, 
10 -23 ~ I ~ 10 -22 cm. This larger value, with respect to Planck's lpl,  gives rise 
to some hope that quantum or stochastic properties of space-time in the 
microworld may be discovered in the near future. 

Our approach may be regarded as a primitive method of quantization 
(or stochastization) of gravity, based on the quantum (or stochastic) proper- 
ties of the space-time metric only, and belongs to the standard perturbative 
scheme where quantum (or stochastic) geometry may be understood in 
terms of small fluctuations around a classical background space-time. The 
theory of gravity coupled to matter is not considered here [see Dineykhan 
et al. (1989), where we attempt to construct the Green functions for scalar 
particle in the fluctuating space-time metric). The effective action for quan- 
tum scalars in a background gravitational field is evaluated by Mann et al. 
(1989) in operator regularization (McKeon and Sherry, 1987), using both 
the weak-field method and the normal coordinate expansion. Attention is 
currently being paid to the study of nonperturbative methods in quantum 
gravity, in which the splitting of the metric into a classical background part 
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and a fluctuating quantum part is not made (Rovelli and Smolin, 1988; 
Kuchar, 1981, and references therein). 

Deeper issues in quantum gravity were presented in the proceedings 
of  the second Oxford symposium edited by Isham et al. (1981) and of the 
1 lth International conference on general relativity and gravitation edited 
by MacCallum (1987). For a review of  the present status of  perturbative 
and nonperturbative methods in quantum gravity, see Isham (1987). 

The outline of the present review is as follows. In Section 1 we introduce 
some formal linear integral transformations of coordinates which allow us 
to formulate a general covariance principle for a fictitious "gravitational" 
field e ~ (x ) ,  introduced by means of the stochastic metric concept. With 
this stochastic metric we reconstruct all consequences of  the special theory 
of  relativity. Sections 2 and 3 are devoted to the extension of  our formalism 
to the gravitational field and to the investigation of  proper  tensor analysis 
leading to changes to Einstein's equation (Section 5) in stochastic space- 
time. Gravitational effects due to the stochastic metric on physical processes 
are discussed in Section 4. Reconstruction of  relativity theory with quantum 
fluctuation of the space-time metric is given in Section 6. Here we show 
that quantum geometry is indeed caused by quantized gravitonlike fields, 
i.e., a deeper connection exists between them. In Section 7 we discuss some 
physical consequences of  the theory with stochastic and quantum fluctu- 
ations of  the space-time metric and obtain a lower limit for the fundamental 
length I. 

1. THE SPECIAL THEORY OF RELATIVITY 
WITH STOCHASTIC METRIC 

1.1. Fictitious "Gravitational" Field, the Equivalence Principle, 
and Modified Space-Time Metric 

The main aim of this section is to formulate the physical principles of 
introducing stochastic fluctuations of the space-time metric. Generally 
speaking, an idea of a stochastic or quantum fluctuation in the metric is 
needed in order to understand the unification mechanism of Einstein's 
theory of  relativity with quantum laws, and is caused by a real physical 
situation when we use the gravitational vacuum concept (or zero-point 
radiation field) by analogy with the hypothesis of the existence of the 
stochastic electromagnetic vacuum (Braffort and Tzara, 1954; Braffort et 
aL, 1965; Marshall, 1965; Boyer, 1975a, b; see Vigier, 1982; Namsrai, 1986b, 
and references therein). It seems that a universal background or radiation 
field initially arose from processes in the early universe (the Big Bang), 
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acting on physical objects everywhere, and its form of  interaction can be 
described by means of stochastic or quantum fluctuations of the space-time 
metric. A typical example is the microwave background radiation as a probe 
of the contemporary structure as well as the history of the universe 
(Zel'dovich and Sunyaev, 1980). In addition, a Doppler search for a gravita- 
tional background radiation with two spacecraft was presented by Bertotti 
and Iess (1985). All possible zero eigenvalues for quantum fluctuations in 
the presence of the instanton have been discussed by Inagaki (1977), while 
quantum cosmological problems connected with the existence of the cosmo- 
logical constant were discussed by Weinberg (1989). 

We assume here that a gravitational vacuum-like background radiation 
gives rise to some fictitious "gravitational" field which is described by means 
of  stochastic or quantum fluctuations of the space-time metric. Furthermore, 
it is suggested that, for this fictitious "gravitational" field, the equivalence 
principle may be reformulated as follows: At every point of space-time in 
a fictitious gravitational radiation field one can choose the local inertial 
system of  reference such that in a sufficiently small neighborhood of the 
given point the laws of nature will have the same form as the (pseudo-) 
Riemannian coordinates. We call the equivalence principle formulated in 
this way the modified equivalence principle or the equivalence principle of 
the first level. 

Thus, we consider a freely moving particle under the action of a fictitious 
"gravitational" radiation field, According to the equivalence principle of 
the first level reformulated above, there exists a system of  reference ~ in 
which a particle moves along an almost rectilinear trajectory given by the 
equation 

d2 t~ ~ 
- 0  (1.1) 

dr  2 

where dr  is the proper t ime 

dr  2 = -rl~t3 d~ ~ d~ ~ (1.2) 

Now, due to the stochastic fluctuation of the space-time metric caused by 
some initial stochastic gravitational radiation field, the system of reference 
~ becomes a curvilinear one x *~ with a stochastic metric, and therefore the 
coordinates s ~ of the system of reference free from action are functions 
of x ~. 

In order to introduce stochastic fluctuations in the metric explicitly, 
we first define the formal l inear integral t ransformat ion of coordinates leading 
to the passage from the usual system of reference ~ with the Minkowski 



Stochastic and Quantum Space-Time 597 

metric ~7~t~ to the quasi-inertial one x ~" with a stochastic metric g ~ ( x ) .  Let 
us consider the formal transformation 

I i 
where h ~ ( p )  is an arbitrary second-rank tensor and at the same time is a 
stochastic function of the argument p, and O(x) is the H e a v i s i d e f u n c t i o n  

0 ( 1 ) = { ;  />0x<_0 

Thus, according to the assumption that the coordinates s c~ of the system 
of reference are functions of x ~, equation (1.1) takes the form 

d ( 0 ~  ~ dx  ~'] O~ ~ d2x  u 02~ ~ dx  '~ dx"  

\ Tx" & / ox" d T  ~ =o Ox" Ox ~ dr  dr  

Multiplying this equation by Oxa/O( ~ and using the well-known multiplica- 

tion rule 

O( ~ Ox A 
Ox" O~ ~ 8~ (1.4) 

we get the following equation of  motion: 

dEx a dx ~ dx ~ 
- - ,  ~ o (1.5) 
d'r 2 + "Y~*" dr  dr  

where * y~,~ is the affine connect ion- l ike  quantity defined as 

Ox ~ 02~ ~ 
A = (1.6a) 

Y ~  0 ~  Ox ~ Ox ~ 

The connection 
['r~_(s) a_(s) ~_(s)'l Og ~a]  

Y,,a = ~g(,) [ Ox ~ Oxg Ox ~ j 

is easily established in our case (for details, see Section 2), where the metric 
_(s) is defined by formula (1.9). tensor g,~ 

The proper t ime (1.2) may also be expressed in the system of  reference 
with the stochastic metric by the formula 

O ~" dx " OST[ dx ~ (1.7) 
dr2 = - % t 3  0x ~ Ox 

or  

d.r2 _(s) dx*' dx  ~ (1.8) = - , g ~ v  
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where g~) is the stochastic metric defined as 

g(S) = a f J  '~ Or r 
" " - -ax"  Ox" "ooa3 (1.9) 

Now, making use of (1.3), we calculate the explicit form of  (1.9) and 
verify its identity (1.4). For this purpose, recalling that the derivative of  the 
Heaviside function O(x) equals 8(x),  we get immediately from (1.3) 

a ~  a a 1 /3 ~e 13 _ _  a 1 ct 
Ox" = 8'~ +~8~h13(x ) = 8~, +~e~,(x) (1.10) 

Therefore 

. )  _ a C  a~ ~ 
g,~.(x) - _ a 1 ~e 13 1 13 

o x  ~ o x  ~ n ~  - [ 8 ~ + ~ ( x ) ] [ ~  + ~ e ~ ( x ) ] n . ~  

1 p = ~ + e ~ ( x )  +~e~(x)e~p(x) (1.11) 

Here we have assumed that e ~ ( x )  = e~(x ) ,  other properties of  which will 
be given below. 

Further, by direct calculation, one can show that an inverse Jacobian 
of  transformation with respect to (1.10) is 

a x  x A 1 A 1 p A 1 p 8 A a.-~e~(x) �9 �9 - + ~ o ( x ) ~ . ( x ) - ~ . ( x ) ~ o ( x ) ~ ( x ) + .  
Of" 

It turns out that when this series is summed up, the result reads 

Oxh h ot 1 a --1 
a~:~ = 80[8" +~eo(x)  ] (1.12) 

This identity allows us to define an inverse metric tensor by the following 
formula: 

O X "  a x  ~ 
g(~;--- g(,)=~ - ~7 ~r = n ~ -  e ~ (x)+3e"O(x)e;(x)  . . . .  (1.13a) 

aC a~ :~ 

it is easily verified that 

for the stochastic metric. 

~,~ ( s )  c~ g(s)g,,, = 8,  (1.13b) 

1.2. The Euclidean Postulate and Properties of Stochastic Tensor e~,~(x) 

Generally speaking, the stochastic properties of the tensor e,~(x) are 
E defined in the Euclidean domain of variables x~ = (x4= ixo, x). It is well 

known that in the Minkowski space-time, an invariant measure d P [ r  2] 
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depending on the variable ,,/.2 = X 2 _ X 2  and at the same time obeying the 
condition 

I dP [ r 2] = 1 

does not exist. In the Euclidean case, the behavior of  the random field of  
interest s (x e) is described by a probability distribution P[ e ], or equivalently 
by the moments  of  the probability distribution (we assume here that all the 
moments exist), 

(e (x f ) .  . . e(xZ~))= f [de] e(x~).  . . e(x~)P[s] 

In this equation x~ are points in a four-dimensional Euclidean space N ~ 
and the integration is over the value of e at each point in N 4. Here, for 
simplicity, tensor indices for the value e are omitted. 

The most common probabili ty distribution encountered in practice is 
a Gaussian distribution, which has 

= 1 1 P[e] ~ e x p { - i  f l dexd4ye~,(xr)D-~l~.p.~(xE-ye)ep~(yE) } 

where N is a constant chosen so that P[e] is normalized to unity and 
--1 E D~.~.p~(x _ ye) is the inverse of  the two-point correlation 

( s,~( xe )ep~(y~ ) ) = D,~.p~.( x ~ - y~ ) (1.14) 

Before going to a definition of its momentum representation, we now 
give the properties of the tensor field e~(x). Assume that the stochastic 
additional term to the usual Minkowski metric given by formula (1.11) is 
a weak tensor field which should be regarded as a gravitonlike field with 
spin two. Then, e.~(x) satisfies the following conditions: 

e .~(x)  = ~ ( x )  

O~,e.~(x) = 0 (1.15) 

Tr e.~(x) = 0 

These conditions are sufficient to construct the correlation function by means 
of  the divisor 

d.~(p) = ~q.~ _p .p jp2  

satisfying the identities 

p " d . . ( p )  = 0, n "~d .~ (p )  = 3 
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and, therefore, 

where 

(1.16) 

I-I.~.~A(p) = d~(p)d~x(p) + d~x(p)d~x -~ d.~(p)d~a(p) 

is the projecting tensor for the spin-two field. 
Now we turn to the Euclidean formulation again and define the momen- 

tum representation for the covariance (1.14), the Fourier transform of which 
is 

f..14~ ~--iqExEl~(i) I'~ ~ (1.17) D~,.,o~(x u ) 

Here, we distinguish two possibilities (G is the Newtonian constant): 
6 ( 1 )  / x 2 (1) " ( 1 )  2 1. .~. .~tq~) = G r I . ~ . ~ ( q ~ ) D ,  (q~)  

" ( 2 )  (2) * ( 2 )  2 2. D.~,o~(qE) = GII~,~.,~(qE)D, (qe), 
(o where the corresponding projecting tensors II~,~,p~(qE) (i = 1, 2) are defined 

by means of the divisors 
(1) E E 2 (2) E E 2 - qe6.~, q .q~ /qE  - ~ d.~(qE) = q.q~ d.~(qE) = 

respectively, and the distribution functions/)ll)(q 2) and/)12)(q 2) satisfy the 
following conditions: 

(2~')-4 f dgqe 1)ll)(q~) = 1 (1.18a) 

12(2"//') -4 f d4qE ]~12)(q 2) = 1 (1.18b) 

where l is the parameter of the theory; we call it the fundamental length. 
The appearance of the value 12 in expression (1.18b) follows from a 
dimensional argument. 

One can accomplish the passage from the Euclidean description to 
physical vacuumlike amplitudes; for this the following complex substitu- 
tions are used: 

X4"~ ix ~ q4-+ - iq  ~ 6~,~ "+ ~, ,  (1.19) 

As a result, the function (1.17) acquires the following form in the Minkowski 
space-time: 

f p-,q~c,) (at i= 2 Du~,o,~(x) = i - ' (2~)  -4 d4q _ --~,~,p . . . . .  1, (1.20) 
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where ~(o (1) D~.~,p,~(q) are constructed by means of the divisors d ~ . ( q ) =  
d (2) = q~q~,_qaq~,~ [ j , , ( q ) = q ~ , q ~ / q 2 r l ~ ]  and functions Dl~ 2) and d4q 

dqo dR, q2= _q2o+q2" Here, it should be noted that conditions (1.18a) and 
(1.18b) satisfy only the Euclidean metric. 

Now our main question arises: how to link a real physical construction 
of the theory with stochastic fluctuations in the metric with the Euclidean 
description (1.17) or its Minkowski version (1.20). We act as follows. First, 
we mention that physical observables are indeed obtained by means of 
some formal averaging procedure in the Minkowski space-time which is 
equivalent to the covariance (1.17) for the Euclidean formulation. For 
example, the real physical meaning of the obtained metric (1.11) is its 
averaged version 

g .~ (x )=  (s) I . (g,~(x))s = (1.21) 

Here, an intermediate averaging procedure (. �9 .)s should be constructed so 
that it will be reduced to taking the expectation value (1.17) of stochastic 
fields eu~(x) in the Euclidean metric. Thus, 

(e,~,~(xl) �9 �9 �9 e~,,.~n(x,))~ = 0 if n is odd 

and 

( S # , v , ( X l ) "  " " 8 . , ,~ . (Xn) )E  : 2 [ I  D~)i , , ju , (x i -x j )  if n is e v e n  
{p.ivj} i# j  

the sum being taken over all the permutations of  the indices {>,@. Second, 
to construct an explicit form of the function (~) D~,~,p~(x) we use the Euclidean 
postulate (Schwinger, 1970): mapping Minkowski space-time onto the 
Euclidean space, the invariant vacuumlike amplitude D ~*) t x - x j )  M.iui , /~ j l ,~ j \  I 

describing the full physical stochastic process preserves both its meaning 
and invariance character. The Euclidean postulate will turn out to be more 
natural if one notices that the function o) D**,,,p~(x) possesses all the necessary 
properties; the Euclidean invariant function connected with it exists 
everywhere including the point x = 0, which is just D~,~,p~(x ~) obtained 
above. To show this we define the Fourier transform 

~ ( x )  = (2~) -~ f d 4 p e -'P~ eu.(p)  " (1.22) 

and the covariance 

(g~(p)~p~(q))~ = i '(2rr)48(4)(p+q)J~.,,o~.(p) (1.23) 

for the stochastic field e,.~(x). Then 

(e~,,,(x)ep~(y))~ = i-l(2rr) -4 f d 4-/-' e -ip(~-y)/~,~,p,~t v,~r -~ (1.24) 
,) 
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According to the Euclidean postulate, one can carry out the substitutions 

xO ~ i - i x 4 ,  pO ip4, rl .~ ~ 3~ v 

yO ~ i-ly4 

in expression (1.24), and it is easily seen that the obtained result coincides 
with (1.16) and (1.17). 

It should be noted that by our construction in the given scheme, the 
simpler covariance of the type 

D.~,o,~(0 ) = (e~.(x)ep=(x))~ 

will be encountered in many cases. Calculation of this type of covariance 
is not difficult. In particular, the expression (1.21) takes the form 

g~,~(x) 1 (s)o, = ,q., + zD,~,,,p (0) (1.25) 

where 

Dry)f;(0) = i - 1 ( 2 , n ' )  - 4  j d4p [d~(p)d~(p) + d~o(p)d~(p) 

2 p " (i) 2 -gd~,(P)d~p(p)]D~,G(p ) 
f 2 4 ~(1) 2 ~G qED, (qz) 

= ~n,~(2~-) -4 d'q~ x [ G/~12)(q2 ) 

d qzqEDt (qe) ( G2/27F~-4 [ 4 4 "(1) 2 

= ~n,,~ x L G~ I= 

Here we have turned to the Euclidean metric and used the normalization 
condition (1.18b). 

1.3. Change of the Time Scale and Distance 

By our construction, although the stochastic fluctuation in the metric 
(1.11) with respect to the background Minkowski space-time remains an 
invariant character of the velocity of light, it leads to kinematical consequen- 
ces for particles moving with speed smaller than the light velocity. One of 
them is the change of the time scale for moving clocks. For the definition 
of this change, in our case, consider clocks moving with an arbitrary velocity 
in the fictitious "gravitational" field given by the stochastic metric (s) g~(x). 
Then, according to the result obtained in Section 1.1, in a coordinate system 
x ~, the space-time interval between counts shown by the clocks is given by 
formula (1.8) with (1.11), 

A,.gs = _(s) d x . ) l / 2  ( - , ;~  dx ~ (1.26) 
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Since the velocity of the clocks is dx~/dt,  the time interval between counts 
is defined by 

A% = dt ( -r dx~ dx~') 1/2 
- 8 ~  dt dt ,I (1.27a) 

o r  

A% = dt (-g~o)) ~/2 (1.27b) 

for the special case when the clocks are at rest. Taking into account the 
explicit form (1.11) and assuming that the stochastic fluctuating metric is 
small, we obtain a series over the field e,~(x): 

A.:, = dt [ A  1/2 1 - 1 / 2  1 p iz v - ~ A  (e~,~(x)+ze~,(x)e~p(x))u u 

-~A-3/2e ,~(x)ep~(x)u"u~u~ ~ +" �9 "] (1.28) 

where 

u ~ = dx~/dt ,  A = - r l ~ u ~ u  ~ 

Further, we carry out the intermediate averaging procedure as done above 
and calculate some tensor algebra. The result reads 

A~" = (A%)~ = (1 --V2/C2)1/211 q-_~54/)(0)] dt (1.29) 

Here, we have used the following expressions: 

and 

D . ~ : ( 0 )  = 5 1 - ~( , . p ~ / ~  + r/g,~r/~p - y~f .  ~r/p,~) D ( 0 )  (1.30) 

IG2(2~.)-4 f 4 4 " ( 1 )  2 d qEqED,  (qe)  for (1.18a) 

f f ) (O)=~G/I2  for (1.18b) 
(1.31) 

Now, let us consider the element dl of the spatial distance in the 
space-time with stochastic metric (1.11). Due to the stochastic character of 
the space-time metric, the value of dl fluctuates and becomes of no definite 
length. According to the definition of "spacelike" distance in the usual 
theory of relativity, one can calculate a full " t ime" interval between leaving 
and coming signals at the same point of space-time with a stochastic metric, 
which is given by the formula (for details, see Landau and Lifschitz, 1971) 

dx~o2)_ dx~o 1) .w _r162162 _ .r162 dx i dxJ],/2, ---- -r ] Lk~oi r ,~0 ~5,00 ) 

( i , j  = 1, 2, 3) (1.32) 

According to formula (1.27b), the corresponding interval of true time A~-~ 
is obtained by multiplication of (1.32) by the value (-g~o~o))~/2/c and the 
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distance dl between both points defined by further multiplication by c /2 .  
Thus, we find 

dip�9 = (g~)  - ~oi~)-(s)l~oj I ~oo-(~)~J d xi  dxJ 

In the approximation of the weak-field l imit its averaged value acquires the 
form 

dl 2 = (dl~)s = [ ~Tu + Ooi, oj(O) +�88 ] dx  i dx  j 

Substituting here the explicit form of the functions De..)(O ) by the formula 
(1.30), we get 

dl 2 = dl~[1 + 7~/9(0)] (1.33) 

where/)(0) is given by formula (1.31), and 

dl~ = go dXi dxJ, "T~iJ ~ ~ij 

is the s tandard  spatial  e lement  of the Euclidean distance between two points. 
Notice that the quantity 

3,(s) _ _ ( s )  _ . ( ~ ) ~ ( ~ ) / . ( s )  ( 1 . 3 4 )  ij --gi j  ,N Oi ,~ Oj / i 5 0 0  

is the three-dimensional metric tensor defining the metric, i.e., the geometric 
properties of space. 

Now we turn to the problem of calculating the red-shift  contribution 
due to the stochastic fluctuation of the space-time metric. For this purpose, 
let us consider the particular case (1.27b), when the clocks are at rest. As 
in the usual theory of gravity, in our case we do not observe the coefficients 
of change of the time scale appearing (1.27b) by measuring the time interval 
dt  between two counts and comparing it with the averaged value (A~,~)~. 
However, we can compare the coefficients of the change of the time scale 
due to the fluctuational nature of the space-time metric at two different 
points of the field. It is assumed, for example, that at point 1 we observe 
a light signal coming from point 2, where it appears as a result of some 
atomic transition. Therefore, according to formula (1.27b), the time between 
two successive signals arriving at point 1 will be connected with the time 
between those leaving from point 2 by the formula 

dt2 = ( A r~)[-goo( X2) ] -~/2 

If an analogous atomic transition takes place at the point 1, then the time 
separating the arriving light wave signals measured at point 1 is equal to 

dt~ = ( A % )[--goo( Xl) ] -1/2 

Thus, for the given atomic transition, the ratio of frequencies for (observing 
at point 1) light leaving from point 2 and light coming from point 1 is given 
by 

( lJ2/I lJ l )s  = [goo(X2)/goo(Xl )] 1/2 (1.35) 
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For  the limiting case of  a weak field e~(x), v2/vx = 1 + A v~ v and expression 
(1.35) takes the form 

(~2/~,) ,  = 1 + (zxv /~L 

= 1 + ~ D 0 o ( X , )  - ~ o o ( X g ]  

+ l[  ~ ( x , ) ~ o o ( X , )  - ~(x2)~o~(X2)] 

1 2 2 1 2 1 
~- ~[ E 00(X1 ) -- E00(X2) ] + ~800(Xl  ) -- ~E00(X2) E00(X1 ) 

After the averaging procedure, we have 

A / ] / p  = (A/ .y/~,)s  1 1 = zDoo,oo(0) - aDoo,oo(X~ - x2) (1.36), 

where  

and 

Doo,oo(O) = ~/)(0) 

f 
Doo,oo(Xt-x2) = (27r) -4 J d4p 1-Ioo,oo(P) e-'P(x'-xg~)t(p 2) (1.37) 

We first calculate /9(0) for  both cases (1.18a) and (1.18b). It is easy 
to verify that  according to the normal izat ion condi t ion (here and below 
omitt ing index E on the m o m e n t u m  variable) 

i2(2zr) -4 f d4p/gt(p 2) = 1 

for  the case (1.18b) the funct ion 

fi(O) - 5 G 
6 l: (1.38) 

for  any distribution/:312)(p2), i.e., it does not  depend  on its concrete  form. 
For  the case (1.18a), an explicit  form of  the distr ibution funct ion Dll)(p 2) 
should be given. The choice 

/~ (1 ) (p2 )  = c~(1 +p212)-s (1.39) 

with the normal izat ion coefficient el = 6"25 7r 2 gives 

D ( 0 )  = 5 G ~ 
2 l 4 (1.40) 
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for the case (1.18a). The second term in (1.36) given by formula (1.37) has 
a potential character and depends on the concrete realization of experi- 
mental situations. We calculate it in the static limit Po = 0 and in the case 
when the distribution function is given by the formula 

/~(i)(p2) = 1 . .  2913(1 + p212)-5 (1.41) 

Taking into account that 

I~00 00(P ) 4 2 , = 3 ( P o -  ~7ooP2) 2 = 4p4 

we have 

x X f Doo,oo((1) 1 - 2) = 4G2(2~r)-3 d3P e-~P<x'-X2>P'/~(1)(P 2) 

= (28G213/157r2) f d3p p4(1 +p212)-5 e-iP(Xt-Xa) 

Standard integration over the angles ~o and 0 gives 

fo:  io D~o~o),oo(X) = (28G213/157r 2) dp p 2 d~ dO sin 0 

• e-ilpl-Ixlcos o(1 +p212)-5 

= (2'~ f o  dp sinpx.pS(l+p212) -5 (1.42) 

where x = IXl-X2l. After some elementary transformation this integral is 
reduced to the standard one 

28G213 d2 [ ] 
(1) ~ y--3/2(1 + xy-l/2) exp(_xy-1/2) 

Doo,oo(X)- 45~x dy 2 lt~ 

__4 G 2 [ 1 5 + 1 5 ( / ) _ 1 0 ( / ) 2 + ( / )  3] e_X/, 
45 14 (1.43) 

For the second case (1.18b) with the distribution function 
/~(2)(p2) = 257r1(1 + p21:)-3 

the integral (1.42) acquires the form 

G (  x)  e_X/~ (1.44) (2) 4 1+~ Doo,oo(X) = ~ 

Collecting the results (1.38), (1.40), (1.43), and (1.44) together, we have for 
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expression (1.36) 

1 2 14 

4 G 
12 

5 G 2 [ X x 2 I x \  33 
45 l 4 e-X/l 1 5 + 1 5 7 - 1 0 - ~ + ~ 7 )  J 

3 12 1+ e -x/t 

for (1.18a) 

From the calculated contribution of (1.36) with (1.38) and (1.40) to 
the red shift due to the stochastic fluctuation in the metric we now find an 
estimation of the fundamental length. For this there is one interesting 
experimental test of the gravitational red shift, realized by Pound and Rebka 
(1960). They allowed a photon emitted by 57Fe, due to an energy transition 
of 14.4 keV (0.1 mks), to fall from a height of 22.6 m, and observed its 
resonance absorption by the same atom 57Fe. In the usual theory of gravity, 
if the equivalence principle is valid, one must expect that the light frequency 
falling into the target will be shifted by the classical value 

(A/y//Y)cl = - -A(~  = ( j~(Xl)l target-  ~ ( X 2 )  I . . . . . .  = 2.46 x 10 -is 

At present, this theoretical calculation coincides with the experimental result 
(Av/V)exp=2.6xlO -15 to an accuracy of about 1% (Pound and Snider, 
1964). Therefore, the contribution due to stochastically fluctuating metric 
in (1.36) should be less than the experimental errors: 

(Av/v)stooh ~< 0.26 X 10 -is 

It is easily verified that the second term in (1.36), in accordance with (1.43), 
(1.44), and the condition of the experiment, is much smaller than the first 
term, and therefore, from the first term of the latter expression in (1.45), 
we conclude that 

I~  > 10 -25 cm (1.46) 

Thus, we have shown that the change of the time scale due to the stochastic 
fluctuation of the space-time metric allows us to estimate the lower bound 
on the value of the fundamental length. However, the most stringent bound 
will be given in Section 7. 

1.4. Appearanee of an Additional Force Due to Stochastic Fluctuation in 
the Metric 

We see that particle motion (1.5) in a fictitious "gravitational" field 
given by the metric (t.11) is defined by the quantities y ~  in (1.6). By 
definition, the derivative d2x"/dr 2 is the four-acceleration of the particle. 

for (1.18b) 

(1.45) 
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Therefore, one can call the quantity a " ~ - m y , ; u  u the four-force acting on 
the particle in this fictitious "gravitational" field. Now, we define this force 
for the constant fictitious field e ~ ( x )  =- e,~(x). According to the usual theory 
of relativity (for example, see Landau and Lifschitz, 1971) the necessary 
components of A y,~ in the three-dimensional case are 

i 1 ; i  
Too = ~h 

h i i -~&h (1.47) T o j = . ~ ( g . j _ g ) i )  1 ;i 

' = a ~ k + ~ [ g j ( g k - - g ; k ) + g k ( g y - -  ' 1 ;i ")tJ k ;i i g j ) ]  +$gjgkh 

Here, all tensor operators (see Section 3; in particular: covariant differenti- 
ation, raising and lowering indices) are carried out in the three-dimensional 
space with the metric 7ij of (1.34) by means of the three-dimensional vector 
g i = - g o J g o o  and the three-dimensional scalar h =-goo.  The quantity )t~- k 
is the three-dimensional Christoffel  symbol  constructed of components of 
the tensor 3'u, since in accordance with formula (1.6b), 3',~ are formed of 
the components of gO~ and g~ ,  where the components of the contravariant 
tensor gA~ equal 

gU = 7iJ, g0i = g~ ____ y~jgj 

Substituting (1.47) into the equation of motion 

du ~ 
- -  = - 3'~o(U~ 2 - 2 yioju~ - 7~k U juk 
dr  

and making use of expressions [for details, See Section 1.5 and formula 
(1.64)] 

U i = ( v i / c ) f l ,  U 0 = h - 1 / 2 ~ 8  q - g i l ) i j ~ / c ,  /3 = (1 - - u  

for four-velocity in space-time with fluctuating metric and after simple 
transformations, we get 

d-7 fl =-�89 (1.48) 
c 

Acting on a particle, the potential "force" f is the derivative of its momentum 
p with respect to the (synchronized) proper time and is defined by the 
"covar ian t "  differential in the three-dimensional space 

�9 _ _ l . D p  i d 
f ~ = cp D r  = c~- I  -~7 f lmvi  + hJkmflvJ*Ak 

From (1.48) it follows that 

f~= m f l c 2 { - g r a d l n  x/h+x/h [V-c x rot g] } (1.49) 
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This formula coincides formally with the force acting on the particle due 
to the usual constant gravitational field. Notice that in our case this force 
has a stochastic character since the expressions h and g entering into it 
possess random properties, Now we calculate an averaged force, For this, 
we decompose it over the weak field e~(x) and carry out an averaging 
procedure according to the previous sections. In the weak-field limit we have 

l n ~ / ~ : _ l E o o  1 p 1 2 O ( E  3) - - g ~ O E O p - - ~ 8 0 0  + 

~_1 p _ 1 p --1 
gi = g i = _ (  T~oi + eoi , 4 e o e i p ) (  1 + eoo+aeoeop) 

1 p 
= 80i -'}- 60i8oo "~-aE o 8ip 

Therefore, in this approximation, the force (1.49) acquires the form 

2 / 1 1 p 1 2 f = mfic Vi(5_eoo+geoeop +geoo ) 

+ [ 1  l 1 p -~eoo-~(eo eo~ + do)] 

1 1 p "~ 
X -- eijkVjeknmOn(eOm -~- eomeoo+aeo emp) (1.50) 

J C 

where e~k is the full antisymmetric tensor of the third rank. To calculate an 
averaged force, one needs to modify the distribution function/5~(q 2) in the 
presence of a particle with momentum qo and mass m. Choose the Gaussian 
normalized distribution 

(27r) -3 ( d 3 q / ) I m ) ( q  2) = 1 

d 
(1.51) 

/51m)(q 2) = (2rr)3/213 e x p [ - ( q -  qo)212/2] 

and carry out an averaging procedure for an expression of the type 

aie~,(x). COAX) 

by the formula 

(O~e~(x)'eop(X))~=(2rr)-3G 2 d3qqi O,op(q) (1.52) 

where we have used the following definitions: 

e~(x) = (2~r) -3 f d3ql eiq~g~(q~) 

Oieoo(X) = i (2"n ' )  -3  d3 q2 e q: q2ieop(q2) 
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and 

(~(ql)eoo(q2))~ = i-I(2~')33(3)(q~ +q2)/)~,op(q~) (1.53) 

It is just a modified version of the covariance ( 1.23) for the three-dimensional 
case. Then, from (1.50) we find 

(-Vi In ~/h)~ = J(0ie 8(x)" eo. (x)) + �89 �9 eoo(X)) 

= -~GZ(2rr)-3 I d3q q4qi/)~m)(q2) (1.54) 

Here, the factor q4 results from the identities 
p I 2 p 

Ao,oAqGo~O = [ a ~ ( q ) & A q )  + a~(q)aoo(q) - ~ao ao~]lqo~o = - ~ q 4  

and 

aoo,oo(q)l~o~O = ~q ~ 

forthe divisor (~) d~(q)  = q~q~ - q 2  and distributions of the type of (1.18a). 
On the other hand, it is easy to verify that the second averaged term in 
(1.49) or (1.50) becomes zero by the construction of tensor structures 

aoo,o,(q)l~o~O = ag,,o(q)lqo~O -- 0 

Thus, an averaged force (1.49) is determined by the formula (1.54), the 
calculation of which is not difficult for a concrete form of the distributions 
D~m)(q2). For the Gaussian distribution it takes the form 

f=(f~)=_mClc2~G21-4p~[35+(pl)4+14(pl)2], p = ~ p 2  (1.55) 

The equation of motion in the nonrelativistic limit becomes 

dv 
- -  = -~G21-4 mcv[ 35 + ( mvl)4 + 14( mvl) 2] (1.56) 
dt 

where the dimension of the particle's mass m (A = h/mc) is expressed as a 
length, i.e., [m] = [cm-~]. We see that finding the particle's trajectory is 
complicated and is reduced to the solution of an essential nonlinear differen- 
tial equation of first order. However, the case (1.18b) is very simple, for 
which we have 

f = -m[3c21p,Gl-2 (1.57) 

o r  

The latter gives 

d v  
- - =  -~mcG1-2v 
dt 

v(t) --- v0 exp(-~GI2mct) (1,58) 
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Thus, in this particular case, the stochastic fluctuation of  the space-time 
metric gives rise to a friction force in the dynamical motion of  a particle. 

It should be noted that instead of  a minus sign in the definition of  the 
force (1.55), it is quite possible to take a plus sign. This uncertainty in the 
choice of  sign for the force due to a stochastic metric is caused by the two 
possible equivalent definitions of the factor exp(•  for the Fourier 
transform of  the stochastic field e,~(x). This problem will be discussed in 
Section 7. 

1.5. Particle Motion in Fictitious "Gravitational" Field 

1.5.1. Four-Velocity 

When there is no external force acting on a particle, its equation of 
motion in the fictitious "gravitational" field with metric (1.11) is defined 
by formula (1.5). By means of  the concept of  covariant differentiation 
defined below (Section 3), this equation may be rewritten as 

D u  A du A 

D r  dr  ~- 3'~"u~'u~ = 0 (1.59) 

where 3%~ is the modified affine-connection (1.16a) and 

dx A 
u ~ =- (1.60) 

c d r  

is the four-vector o f  velocity. The  components of the four-velocity depend 
on each other since dr 2= -'(~) - g . ~  dx  ~ dx ~, and therefore 

us2 = o~,~..~(S)u~u ~.. = -1  (1.61) 

Geometricaiiy' , /his means that in space-time with a stochastic metric, u"  
is also a unit vec'tor. By analogy with the definition of  the four-velocity, we 
call the second derivati,~e 

d 2 x  v d u  n 

c 2 d7:2 - c d r  

the four-acceleration. Differentiating relation (1.61) with respect to the proper  
time c dr, we find 

g~)u ~ du~= du ~" 
"~ c d r  U~cd---'~ = 0  (1.62) 

i.e., in the fluctuating space-time, the four-vectors of  velocity and acceler- 
ation are "mutually perpendicular" (here and below we omit the index s 
any stochastic quantities). 
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It is interesting to define four-velocity for the particular case when the 
stochastic field e , ~ ( x )  does not depend on the time variable x~ we call it 
world time. If  a particle leaves from point A at world time x ~ and arrives 
at point B in the neighborhood of A at the moment x ~  dx  ~ then for the 
definition of velocity one needs to take not the time interval (x~ dx  ~ - x ~ = 

dx  ~ but the difference between x~  + dx ~ and the moment x ~  (goi/  goo) d xi,  

which is the same time x ~ at the point B as well as at A" 

( x ~ + dx ~ - ( x ~ - go, dx  ' / goo) = dx  ~ + go, dx '  / goo 

Multiplying this by the factor (-goo)1/2/c ,  we obtain the corresponding 
interval of  the proper time, so that velocity is 

v' = c dx '[  h(  d x ~  g~ d x i )  ] - 1 / 2  

where we have used the notation 

h = -goo ,  gi = - g o , / g o o  (1.63) 

Notice that for such a definition, the interval ds = c dz  is expressed through 
velocity in the usual form 

ds 2 = -goo(dx~ 2 - 2goi dx  ~ dx i - go dxi  dxj  

= h ( d x  ~ - g, dx ' )  2 - dl 2 = h ( d x  ~ - g~ dxi)2(1 - v 2 / c  2) 

Moreover, v 2 needs to be understood as the square of  a three-vector in the 
space with metric tensor Yo, (1.34): 

V 2 ~ Vi v i ,  V i ~ "YijV j 

The components of  the four-velocity u i = dx~ /ds  are equal to 

ui = ( v i /  c)(1 - v 2 /  c2) -~/2 
(1.64) 

u ~ = h-1/2(1 - v2/c2) -1/2 + (girl~ c)(1 - v2/c2) -1/2 

1.5.2. Four-Force 

As in the case of  relativistic mechanics, we define the four- force  acting 
on a particle with the coordinates x~(~ -) in the space-time with a fluctuating 
metric by the formula 

d 2 x  ;t 
f A _ _  h la. p 

= m c2 d r 2 + m Y , ~ u  u (1.65) 

Obviously, i f f "  is known, then one can calculate the motion of  a particle. 
Now we link this force with the usual force F ~ defined in the local inertial 

sys tem o f  reference ~ free from the fictitious "gravitational" field e~,~(x). 
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Note that upon the passage from the ~ to the x ~ system of  reference the 
differential of  coordinates transforms in the standard way 

Ox ~ 
d x  ~ = 0---7 d,~ ~ 

while dr is invariant. Therefore, from (1.65) it follows that the rule of 
transformation for the quantity f ~  acquires the form 

i f * =  ( O x ' / O r  ~ (1.66) 

Any quantity, such as d x  ~ and f~ ,  transformed by rule (1.66) is called a 
four-vector (for details, see Section 3). 

It is well known that in accordance with the special theory of  relativity, 
the usual re la t iv is t ic  f o r c e  F ~ is connected with the Newtonian force 
fN ( f o  = 0) by the formula 

F = fN + (13 - 1)v(v" fm)/V 2 

F ~  ]3(v.fN) = v . F  

where 

fi = ( l - v 2 )  - ' /2 ( c = l )  

In space-time with a stochastic fluctuating metric the Jacobian of transforma- 
tion between coordinates s ~ and x** is given by (1.12), and therefore, the 
force (1.66) is easily found by means of the known usual force F% Notice 
that from condition (1.61) or (1.62) it follows that 

2_(,) tu dx~  _ 0 g ~ a  --~-r- (1.67) 

To show that it does indeed hold, we remark that the right-hand side of 
(1.67) is invariant under the transformation between the coordinates ~:~ and 
x ~', i.e., 

d x "  ~(s)f,~, _ _(s) Ox~" ~ Ox~ d~ ~ 

~  d r  - g ~ - ~  F O~ e d r  

Making use of the definitions (1.4) and (1.11) for the Jacobian of  transforma- 
tion Ox*/Og ~ and the stochastic metric _(s) g ~ . ,  we get 

d x  '~ 8~ p 0~'* Ox ~ Ox ~ F ~  dE s (s) ~ 

g ~ " f  d r  = ~P~Ox ~ Ox" O~ ~ O~ t~ d r  

d~ ~ 
= rl~#F~ d r  
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The latter equals zero in the system of  re~'ei'ence in which a particle is at 
rest. Indeed, in accordance with the usual special theory of  relativity, if the 
particle is at rest at the given time moment, then proper  time dr coincides 
with dt, so that F ~ i = f r~ ,  where f ~  are the Cartesian components of  the 
nonrelativistic force F and F ~ 0. 

1.5.3. Energy, Momentum,  and an Addit ional  Potential 

The f our -momentum of  the particle in our fictitious "gravitational" field 
is defined as 

~ = mcu ~ 

and its square equals (omitting the symbol s on the metric tensor g~,~) 

g ~ ' ~  = ~ , ~  = - m E  c 2 (1.68) 

Instead of  ~ , ,  substituting OS/Ox ~ into (1.68), we find the Hamil ton-Jacobi  
equation for the particle in this "gravitational" field from the expression 

OS OS 
g " ~ - -  - - +  m 2  c 2 = 0 (1.69) 

OX ~ c)X ~ 

We observe that due to the stochastic fluctuation of the space-time 
metric, in the limiting case, when the velocity of  the particle is small, an 
additional nonrelativistic "potential" also appears. To connect this fictitious 
"potent ial"  with the metric tensor g,~ we act in the same way as in the case 
of  the usual theory of gravity (Landau and Lifschitz, 1971). Let 

L = - m e  2 + 1 m y  2 - -  m~f 

be the Lagrangian function of  the nonrelativistic particle in our fictitious 
"gravitational" field, The nonrelativistic action of  the particle in it has the 
form 

S = I L dt = - mc (c - �89 + ~of/c) dt 

Comparing this with the expression S -- - m c  ~ ds, ds = cdr,  we see that 

ds = (c - �89  ~os/c ) dt 

Taking the square and omitting terms going to zero at the limit c -~ oo, we find 

ds 2 = (C2 + 2 r  d t 2 - d r  2 (1.70) 

where we have used the equality v dt = dr. 
Thus, the component  of the metric tensor goo in this limiting case takes 

the form 

goo-- - 1 - 2 q ~ f / c  2 (1.71) 
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2 dx~ 
~o = - m c  goo ~ = - m c 2  goo 

We introduce the velocity 

From (1.71) it is easily seen that other components of g~,~ are 

gu = 80, goi = 0 

Thus, in the nonrelativistic case, the stochastic fluctua~,ion of the,space-time 
metric gives rise to the appearance of an additional "potential 

r ') = �89 1 - goo) (1.72) 

and, in accordance with formula (1.11), its averaged value is constant, 

(r = ~6c2/)(0), rloo = -1  (1.73) 

everywhere. If  we take into account the next term in the approximation, 
we have 

~}2) = �89 coo(x) _ l e ~ ( x  ) cop(x)  - �89 

In particular, when the particle moves in the constant fictitious field 
e,.~(x) its energy is defined as the derivative ( - c  OS/Ox ~ of the action S 
with respect to the world time x ~ For example, it follows from this that x ~ 

does not enter into the Hamilton-Jacobi equation explicitly. Defined in this 
way, the energy ~ is the time component of the covariant four-vector of 
momentum p.  ~- rncu.  = mcg.~u  L In a static field, ds 2 = -goo(  dx~ 2 - dl 2, and 
therefore, 

dx  ~ 

(--goo dx  2o - ale) 1/2 

dl c dl 

d~" (-goo dx2o) '~2 

of the particle measured by the proper time, i.e., by an observer located at 
a given place. Then, for energy we get 

~o = mc2( 1 --V2/ Ca)-q/2(--goo)l/2 (1.74) 

This is simply the quantity which remains unchanged upon the particle 
motion in the constant fictitious field e,~(x). 

On the other hand, by using the definition of velocity (1.64) for a 
particle moving in a stationary field, it can be easily verified that the 
expression 

~o = - mc2 goi u i = mceh  ( u o - giu i) 

after substituting (1.64) into it, gives the form (1,74), as expected. Finally, 
the averaged energy in our scheme becomes 

= (~o)s = mc2( 1 - v2 /c2 ) -~ /2[  1 +5/~(0)]  (1.75) 
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The latter may be understood as a change o f  the particle mass m-+ M = 
m + 6m in the space-time with a stochastic metric: 

g = M c 2 ( 1 - v 2 / c 2 )  -1/2, M = m + 6 m ,  6 m = ~ m / ) ( 0 )  (1.76) 

It is important to notice that if from the very beginning we use the 
Euclidean postulate, then the correction of (e ,~(x)eo~(x) )  is constructed 
immediately in the Euclidean metric. Then, the covariance (1.30) acquires 
the form 

E 5 D ~,o~( O ) = ~( 6~o8~ ~ + t~z~t~vp --{t~txv6oo-) l~( O ) (1.77) 

where 6~  is the Euclidean metric: 

{01 if / z ~ v  
6~  = if /x = v 

In this case, the corresponding sign in expression (1.73) and in the second 
term in (1.75) is changed conversely; the result reads 

( ~Of ) s ~- - ~ 6 D ( 0 ) c  2 

and 

o r  

where 

g? = me2(1 --u --~2/~(0)] 

= Mc2(1 - v2 / c2 )  -1/2, M = m - 6m 

(1.78) 

8m = 5m/) (0)  (1.79) 

Finally, it should be noted that in accordance with the Euclidean 
postulate, an expression of the type e~ is transformed to 

p E E /~ u e ~ ( x  )e~p(x ) u E u ~ ,  u~ = (u~ = iu ~ ne =u) ,  and, therefore, 

(e (x . 2) 

which coincides with covariance (e~ ~ obtained above. For 
this reason, the expression (1.29) does not change and its invariant properties 
remain in both the Euclidean and pseudo-Euclidean descriptions of stochas- 
tic processes. 

2. THE GENERAL EQUIVALENCE PRINCIPLE IN SPACE-TIME 
WITH STOCHASTIC METRIC 

2.1. Reformulation of the Equivalence Principle 

Now we consider an external gravitational field and attempt to recon- 
struct the general theory of gravity from the point of view of the stochastic 
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fluctuation of  the space-time metric. In this case, our correspondence 
principle says that when the external gravitational field is absent, then the 
modified general theory of gravity, expounded below, should become the 
special theory of relativity with the stochastic metric reconstructed above. 
It turns out that successful reconstruction of the expected theory is possible 
if we use the equivalence principle with respect to the system of  reference 
x"  with stochastic metric (1.11). 

It is well known that the equivalence principle between gravity and 
inertia can be understood as the reaction of  a physical system on the external 
gravitational field. It is asserted that no external static homogeneous gravita- 
tional field whatever can be detected in a freely falling elevator, since in 
this field an observer, test body, and the elevator itself acquire the same 
acceleration. Following Weinberg (1972), one can easily prove this for an 
N-particle system moving with nonrelativistic velocity under an action force 
(for example, electromagnetic and gravitational) f ( x , -  x,,) in the external 
gravitational field. The equation of motion is 

mn d2xn/dt 2= m , g + ~  f(xn--Xk), n, k =  1, 2 , . . . ,  N (2.1) 
k 

Assuming the following non-Galilean transformation of space-time co- 
ordinates 

x ' - x - � 8 9  2, t ' =  t (2.2) 

one finds that the term with g is compensated by the inertial " force"  and 
the equation of motion takes the form 

m, d2x' /dt  '2 = E f(x'~ - x~,) (2.3) 
k 

Therefore, an observer O using coordinates x, t and a freely falling colleague 
O' using coordinates x', t' do not find any difference in the laws of  mechanics, 
with the exception that O will observe the influence of  a gravitational field 
where O' will not. 

However, in our case, both observers are under action due to an 
additional fictitious "gravitational" field with stochastic metric _(s) This 
fact requires redefinition of  the concept of inertia or an inertial system of 
reference. Under an inertial system of reference we understand a system of 
reference in which a fictitious "gravitational" field is always present. We 
call this system of reference the quasilocal-inertial system of reference. 
Thus, in our scheme, the generalized equivalence principle as formally 
formulated is based on the assumption that at every point of  space-time in 
an arbitrarily chosen gravitational field (not only a static one) one can 
choose "the quasilocal-inertial" system of reference x ~ (with stochastic 
metric) such that in a sufficiently small neighborhood of the given point, 
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the laws of nature will have the same form as in the nonaccelerated Ca~esian 
system of reference. The equivalence principle thus formulated will be called 
the generalized equivalence principle or the equivalence principle of the 
second level 

2.2. Gravitational Force and Stochastic Metric 

Let us consider a "freely" moving particle under the action of purely 
gravitational forces. Here, the word "freely" means that an additional 
stochastic radiation field ~ ( x )  acting on the particle is present everywhere, 
which violates slightly the usual equivalence principle with respect to the 
(pseudo-) Riemannian system of coordinates. To obtain a general form of 
the equation of motion of the particle in the presence of arbitrary gravita- 
tional fields (including the fictitious stochastic background field e~),  we 
formally consider a freely falling system of reference ~ in which a particle 
moves along a rectilinear trajectory given by the equation 

d2~/d~ "2 = 0 (2.4) 

where 

de 2= -rl~t3 d~ ~ d~ ~ (2.5) 

is the proper time. Notice that, according to the equivalence principle of 
the first level formulated in Section 1, from equations (2.4) and (2.5) we 
have obtained the corresponding equations (1.5) and (1.8) for the fictitious 
stochastic field e,~(x) with the stochastic metric (1.9) given by formula 
(1.11). Now assume that we take any other system of reference z ", which 
may be the (pseudo.) Riemannian system of coordinates resting with respect 
to the laboratory system and a curvilinear, accelerated, rotating, or any 
other system of reference at our desire. In this case, the coordinates ~" (or 
x ~) of a freely (or "almost freely") falling system of reference are a function 
of z A, and equation (2.4) acquires the form 

daz ~ d.rd +FX dz~ dz ~ 
~ dr dq" =0 (2.6) 

by analogy with the equation of motion (1.5) of the particle moving in the 
fictitious stochastic field e~(x)  only. By our correspondence principle, if 
external gravitational fields are absent, equation (2.6) turns into (1.5). In 
this case we must put z "--- xL It is assumed that the connection between 
them in the presence of the external gravitational fields [with the exception 
of the fictitious stochastic background field e,v(x)] will be defined in a 
usual form as in the linearized theory of gravity. In (2.6) the function F a 
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is just the affine connect ion defined by 

FA Oz* O2f ~ 

~ =- Of ~ Oz ~ Oz ~ (2.7) 

It is obvious that in our case the well-known multipl ication rules 

Ox '~ Oz ~ Oz ~ Ox a 

Oz ~ Ox ~ Ox" Oz t 3 = 6 ~  (2.8) 

o r  

Of '~ Oz ~ Oz ~ Of* 
Oz" Of ~ - O f "  Oz t3 8~ (2.9) 

are valid. The proper t ime (2.5) can also be written in an arbitrary (stochastic) 
system of reference: 

/3 

d r 2 =  -~7~o Of" d z "  OSff-~'~ dz"  (2.10) 
" 0 Z  ~ 02" 

or [using the definition (1.11)] 

dr  2 = - G , ~  dz"  dz ~ (2.11) 

where G , ,  is the true metric tensor defined by the formula 

o r  ~ o r  ~ o ~  ~ o x  ~ o r  ~ o x  ~ 

G ~ - O z  ~ Oz ~ o ~  Ox ~ Oz" Ox ~ Oz ~7~ 

(s) Ox~ Oxt3 (2.12) 
= g~t3(x) Oz" Oz" 

Here (s) g~t~(x) is given by formula (1.11). Taking into account (1.11) and 
natural transformations of the tensor quantities 

and 

' = e . . ( z )  = e ~ ( x ) -  - -  e p ,  v 
OX~ OXr c~ OXP 
OZ" OZ ~'  eT.(z ) = 8o(X)  

Ox 8 
8oev(Z) = 8 a a -  

Or" 

from (2.12), we immediately get 

G ~ v ( z ) = g % ( z ) + ~ . . ( z )  , o + a e , ( z ) e , p ( z )  (2.13) 

where 

Ox ~ Ox t3 

g ~  = ~q~;3 0z ~, Oz ~ (2.14) 

is caused by a purely external gravitational field and turns into rl, .  when 
the latter is absent (z "=- x~). The last two terms in (2.13) result from the 
stochastic fluctuational properties of the space-time metric. 
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For the p h o t o n  a n d  neu t r ino  the e q u a t i o n  o f  m o t i o n  in the "freely" 
falling system of reference has the same form as (2.4) with the exception 
that their proper time (2.5) is not independent, since for these particles the 
right-hand side of (2.5) vanishes. Instead of r, one uses o . - s  c~ so that 
equations (2.4) and (2.5) take the form 

d2~: ~ 
- 0  do -2 

d~ ~ d~ e 
0 

- 7 /~  do" do. 

as in the usual case. By the same method as above, the motion in the system 
of reference with a stochastic metric in an arbitrary gravitational field reads 

d 2 z  ~ d z  ~ d z  A 

do.2 + F i x  do. do" - 0  (2.15) 

d z  ~ d z  v 

- G ~  do. do. 0 (2.16) 

where F~x(z) and Guy are expressed by the same formulas (2.7) and (2.13), 
respectively. 

2.3. Connection Between Gu,,(z ) and F , ~ ( z )  

As is shown above, in space-time with a stochastic metric the field 
defining the gravitational force is expressed through the "affine connection" 
F~(z ) ,  whereas the proper time interval is given by the metric tensor G ~ ( z ) .  

Now we show that G ~ ( z )  is also the gravitational potential, i.e., its deriva- 
tive gives the field F~(z ) .  Notice that the connection obtained below 
formula (2.24) also preserves its form for the quantities defined by formulas 
(1.6a) and (1.9); it is just (1.6b). 

We recall that the metric tensor is given by the first term of ex- 
pression (2.12), 

a~ o a~~ 

G ~  = rh~ ~ Oz ~ Oz" 

Differentiation of this term with respect to z* yields 

az  x - o z  a Oz ~ a z "  ~7~t~ oz  ~ o z  x o z "  r l ~  (2.17) 

Further, multiplying equation (2.7) by the Jacobian o ( ' / a z  x and making 
use of the multiplication rule (2.8), we get the following equation for ~ :  

02so" = F x 0sr (2.18) 
OZ ~ OZ ~" ~ '  OZx 
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Substituting (2.18) into (2.17), we find 

G 
Oz A ~ ~" Oz p Oz ~ ~7~ + F ~  -0z ~ --Oz p r l ~  

With definition (2.12) this equality takes the form 

o = + F A ~ G o ~  (2.19) Oz,~ F ~ ,  Gp~ P 

To express the generalized attine connection F ~ ( z )  through the metric 
tensor G,~(z ) ,  we add to (2.19) an analogous relation with rearranged 
indices /x and h and subtract from (2.19) an analogous relation with 
rearranged indices v and h. As a result, we get 

a G ~  ~ OGA~ OG~,~ ~ ~ ~ 
Oz ~ Oz"  Oz ~ - G ~ F ~ .  + G ~ . F ~  + Ga~F~ + Ga~F~ 

6 6 
- G ~  F ~ .  - G ~ F  ~ 

= 2G~.F~ u (2.20) 

where we have taken into account the fact that F ~  and G.~ are symmetric 
under the rearrangement of indices/x and u. 

Further, one needs to define an i n v e r s e  t e n s o r  G ~ with respect to 
G~ ,  i.e., 

G ~ G ~  = S~ (2.21) 

It should be noted that definition (2.12) ensures the existence of the i n v e r s e  

t e n s o r  

G ~  =_ G ~ = _  g ~  Oz~ Oz ~ 

OX '~ OX ,~ 

- -  g o -  v o -  3 A o" v - g o - e  (z)+~e (z )ea (z )+O(e  3) (2.22) 

Indeed, making use of the well-known multiplication rule (2.8) and relation 
(1.13b) we find 

G ~ G ~ ,  = g ~  Oz ~ Oz "~ _( , )  Ox v Ox"  

O x  ~ O x  ~ ' g ~ p  Oz  ~ O z "  

= o z  

Ox r g ~  Oz ~ 

Oz c~ OX t3 

Ox r Oz ~ 6~ (2.23) 

which coincides with condition (2.21). 
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Now we return to equation (2.20), multiply it by G ~, and find 

r~, , (z)=�89 OGA~(z) OG~!z )}  
Oz** 0-77 J (2.24) 

Sometimes, the left-hand side of an expression of the type (2.24) is called 
a Christoffel symbol and is denoted by {~}. In our case we call it the 
generalized Christoffel symbol. The relation between Fx~ and G,~ allows 
us to obtain an interesting consequence of  the theory, which asserts that 
the equation of motion of  an "almost freely" falling particle in space-time 
with a stochastic metric automatically preserves the form of the proper time 
interval dr 2. Using equation (2.6), one can find that 

d (  dz"dz_E ~ OG~,~dzXdz~'dz ~ 
d--7 G.~ dr d r ]  Oz z dr dr dr 

dZz ~" dz ~ dz'* d2a v 

+ G,~ dr 2 dr "1- G,,,, d r  d'r 2 

{OGo,~ - ) dz p dz':" dz x 
= \  Oz a G~*~F~176 dr dr d~" 

Taking into account equality (2.19), it is easy to see that this quantity 
disappears, and therefore, 

dz ~ dz ~ 
G ~  dr dr C (2.25) 

where C is an integration constant determined by initial conditions. Further, 
since initial conditions are always chosen in such a way that dr 2 is defined 
by (2.11), we obtain C = 1. Thus, equality (2.25) guarantees that formula 
(2.11) is used along all the particle's trajectories. Analogous initial conditions 
for massless particles leads to C--0  (where r is changed by some other 
parameter ~)  and the equation of motion ensures that the quantity 

dz" dz ~ 
G ~  do" do" 

becomes zero along all trajectories. 

2.4. The Newtonian Approximation (Linearized Gravity) 

In order to find the connection of  our model with the Newtonian 
theory, consider a particle moving slowly in a weak stationary gravitational 
field. We proceed according to the linearized theory of gravity. Further, it 
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is assumed that if the particle is sufficiently slow, then one can neglect 
dzi /dr  ( i  = 1, 2, 3) with respect to dr~ dr, and equation (2.6) acquires the form 

d2z~ F FoUo = 0 (2.26) 
dr 2 \ ar / 

Since the field is stationary, all time derivatives of G ~ ( z )  disappear, and 
therefore, 

F~ - _1(-:~ OGoo 
O0 - -  2 " ~ '  Og ~" 

Moreover, if the field is still weak, one can introduce an almost Cartesian 
system of coordinates in which 

= + IH.J  << 1 (2.27) 

where H.~ consists of two parts: h.~ is due only to an external weak 
_1 o stationary field and e.~ +4e~.e~p is caused by the stochastic fluctuation of 

the space-time metric. Thus, in the first order of H.~, one has 

Fo% =-�89 OHoo 
Oz ~ 

Substituting this expression for the usual affine connection into the equation 
of motion (2.26), we get 

d=z=l  ( dt~2VHoo (2.28) 
dr 2 2 \ d r /  

d 2 t  

dr 2 = 0 

The solution of the second equation in (2.28) is dt /dr  = const, and therefore, 

d 2 z / d t  2 = 1VHoo (2.29) 

In accordance with the usual theory of gravity, the quantity ho0 is defined 
by the Newtonian potential 4~N : 

hoo = -2~bN 

and therefore 

Hoo=-2&N + eoo(X) 1 . i 2 +aeo(X)eoo(X) +~eoo 

where the last term appears from the second order of H**~. On the other 
hand, as is shown above, due to the stochastic properties of the space-time 
metric, an additional "scalar potential" (1.72), 

1 2 1 p 1 2 
= [eoo(X) +aeo(x)eop(X) +  eoo(X)] 
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appears in our scheme, which gives rise to the change of  the Newtonian 
potential 

Thus, in a space-time with a stochastic metric the Newtonian law is changed 
and acquires the form 

d2z/dt 2 = -V(O~ (2.30) 

In this approximation, the space-time metric is given by the formula 

Goo=_l_2(oN+eoo(X) a p 1 2 +Zeo(X)eoo(X)+~eoo(X) (2.31) 

The gravitational potential is of  the order of  10 -39 o n  the "surface" of  the 
p r o t o n ,  10 -9 on the surface of  the Earth, 10 -6 for the Sun, and 10 -4 for the 
white dwarf-type stars. 

Finally, it should be noted that in the given case, the gravitational force 
acting on the particle is given by formula (1.49); there, the quantity h 
entering into it now takes the form h = - G o o ,  so that 

h 1/2 I+(ON ,--2 1 , .  1 2 o = --~ON --Seootl -- (ON) -~(eoo + eo eoo) 

and 

- V  In x/h = --V(ON + V 6 ~  +lV[eoo(1 - 2(ON + 3(O2)] 

+~V[e~o(a --3(ON + ~(O%)] 

+~V[e~eoo(1 - 2(ON + 3(O2)] (2.32) 

Therefore, the potential force is changed and its value is defined by the 
averaging procedure 

F = [ 1  3 1 p + zOoo,oo(0) + zDo,op(0) - 2(ON ]FN (2.33) 

where 

FN = - V  (ON, Doo,oo(0) = ~/~(0) 

f~E3(0) for the Euclidean metric 

D~.op(O) -- ~ ' '[-~/~(0) for the pseudo-Euclidean metric 

In (2.33) we have assumed (eooVeoo)~ = (e~Veop)~ = 0 for the field. When 
(ON = 0, i.e., the external gravitational field becomes zero, expression (2.32) 
coincides with the result obtained above. This is just our correspondence 
principle. 
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2.5. Change of Time Scale in Gravitational Field with Stochastic Metric 

In the presence of a gravitational field the red shift of light frequencies 
should be calculated as above. In the given case, the time interval between 
counts is now defined by 

dt [ - G ~ ( Z )  dz• dz~l-1/2 

~--;= --~7-~ j 
or, in particular, if the clocks are at rest, one gets 

at~aT = [ -  Ooo(z)] -1/2 

Hence, it follows that the ratio of frequencies for (observing at point 1) 
light leaving from point 2 and light coming from point 1 due to some atomic 
transition is given by 

~'2/~', : [ Goo(Z2)/Goo(Z~)]  ~/~ 

For the limiting case of a weak field 
1 p 1 2 Goo = -1  - 249N + Coo(Z) +Zeo( Z)eop(Z) + ~eoo(Z) 

SO that vff  vl = 1 + A v /  u, where 

u/~,  = (zx ~,/~)~ = 6 N  (z2) - 4,N (z l )  

"~ 1[ ~ N  (2'2) --  6 N  (Z1)]  2 I [ ~/)2(Z2) --  ( ~ 2 ( Z l ) ]  

--~Doo,oo(0) [ -  1 - 3 ~bN (z2) + 7 ~bN (z,)]  

-JD~,oo(O)[CbN(Zl)- ~hN (z2)] 

- ~Doo,oo(Zl - z2)[1 - 6N (Z2) -- 3~bN (Zl)] 

From this, we see that even in the absence of the gravitational field there 
exists a contribution to the red-shift value due to the stochastic fluctuation 
of the space-time metric; that is, 

(A v~ v)~too, = �88 -1Doo.oo(Zl - z2) 

coinciding with formula (1.36). 

3. TENSOR ANALYSIS IN SPACE-TIME 
WITH STOCHASTIC METRIC 

3.1. Reformulation of the General Covariance Principle in the Presence of 
the Stochastic Metric 

As is shown above, due to the stochastic or fluctuational character of 
space-time, the equivalence principle between gravity and inertia is achieved 
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up to the order of the value 1~/12 o r  14~/14, depending on the form of the 
distribution for the gravitonlike particle covariance. In the previous sections 
we applied the modified (or generalized) equivalence principle in order to 
introduce the gravitational effect into physical systems in the case of  space- 
time with a stochastic metric. Following this, we also wrote equations in a 
virtual "quasilocal" inertial system of coordinates [i.e., equations of  the 
special theory of relativity such that d2x~/d.c 2 = ( 1 / m ) F  ~ with the stochastic 
metric (s) g,~(x)]  and carried out a transformation of the coordinates x ~  z" 
in order to find corresponding equations in the laboratory system of  coordin- 
ates with a stochastic metric. In principle, one can use this method further; 
but it leads us to very tedious calculations when we arrive at the definition 
of field equations in electrodynamics and gravity. 

Following Weinberg (1972), we here employ another method which 
has the same physical content, but is more elegant in its notation and more 
convenient to handle. This apparoach is based on the extended version of 
the equivalence principle known as the principle of general covariance. It 
asserts that a physical equation is given in an arbitrary gravitational field 
in the case where the following two conditions are fulfilled: 

1, The equation is given in the absence of gravity, i.e., it corresponds 
to the laws of  the special theory of relativity (in our case it is slightly 
modified according to Section 1) when its metric tensor G,~ is equal to the 
stochastic metric ~s) and the affine connection F ~ ( z )  coincides with x r~(x). 

2. The equation is generally covariant, i.e., it preserves its form under 
an arbitrary transformation of coordinates z ~ ~ z '~. 

As in the usual theory of gravity, in our case the general covariance 
principle follows from the equivalence principle. When we obtain the general 
covariance equation, new quantities, the metric tensor G ~  and the affine 

A connection F,~,  enter in. In this case, one does not need to assume that 
these quantities disappear totally, and that therefore any restriction on the 
original equation has arisen. On the contrary, we utilize the existence of  
G~,~ and F ~  in order to introduce gravitational fields. 

The modified general covariance principle is used only on small scales 
with respect to a typical space-time size for gravitational field, since only 
in small domains is one guided by the equivalence principle and able to 
find a system of coordinates in which pure gravitational effects are absent. 

3.2. Vectors and Tensors 

To construct invariant physical equations with respect to the transfor- 
mation of coordinates in a space-time with a stochastic metric, we must 
know how quantities standing in equations under this transformation 
behave. We start from simple physical quantities such as vectors and tensors. 
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By definition, as in the usual case, under the change of  variables z" ~ z '~ 
contra- and covariant  vectors V ~ and U. transform by the formulas 

V, ~ = V~ Oz'___._~" , _ Oz ~ 
a z ~ ,  U ~ - o z , ,  U~ (3.1) 

respectively. For example, the rule of taking the partial derivative gives 

d z , ,  = Oz '~ dz ~ 
az" 

so that the differential of coordinates is a covariant vector. If  r is a scalar 
field, then O~b/az" is a covariant vector, since 

o4, oz ~ o4, 

az r~ - -  az r~ az"  

By this general rule of  transformation of any physical quantity under 
the passage from one system of reference to another, one can easily define 
its value in an arbitrary system of coordinates. For example, we now define 
force P "  in the system of  references z ~" by knowing its value f ~  in the local 
inertial system of coordinates ~ .  Thus, there are three systems of reference 
at our disposal: 

(a) The local inertial system of reference ~:~ with the Minkowski 
metric %r 

(b) The "quasilocal" inertial system of  reference x ~ with the stochastic 
metric 

g . ~ ( x )  - ~ .~  + + ~ e ~ ( x ) e ~ o ( x )  

(c) The general system of reference z" with the stochastic modified 
metric G,~. 

Then, the contravariant vector F~  is defined by the cyclic transformations 

F ~ ( z )  = Oz----~ F ~ ( x )  - Ozt" Ox~ f ~  (3.2) 
ax ~ ax  ~ o~ ~ 

Since the transformation matrix Ox~/O~ ~" is given by formula (1.12), we have 

F Z ( z )  O z " - 8 "  
- -  - -  1 " + Z e , ~ ( x ) e o ( x  ) . . . .  ] f ~  - o x  ~[ ~ - ~ e . ( x )  ~ o 

O Z t X  ~ p  O Z ~  o~ 1 v 1 p 

= o z ~ J  + ~ x , f  [ - s e ~ ( x ) + z e ~ , ( x ) e o ( x )  . . . .  ] 

In the absence of gravity, Oz"/Ox ~ = 8~; therefore, expression (3.2) gives 
the previous result for the modified special theory of relativity with a 
stochastic metric (Section 1). 
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From contra- and covariant vectors one can immediately turn to high- 
rank tensors. For example,  if  T~ ~ is a t e n s o r  of  the type of  U ~ V ~ W  A, then 
its t ransformation is given by 

OZ p a z  p~ o z  ,a 
T " X ( z  ') = az,----- ~ a z  ~, Oz ~ T ; ~ ( z )  

A more important  tensor is the m e t r i c  t e n s o r  defined by the formula 

�9 o C  a~ ~ 
g . ~ ( x )  = r1~r a x  ~ ax,~ 

in an arbitrary chosen system of reference x". In the general system of 
reference when there exists a gravitational field, the metric tensor reads 

o C  o~ ~ o C  o~ ~ ox ~ ox ~ 

G~.(z)  = ~7~t3 Oz"  Oz" - %t~ Ox~ Ox ~ Oz"  Oz" 

and therefore, 

G ~ . ( z ) -  (~) axO ~  
- g p ~ ( x )  Oz~, ~  ~ 

from which we see that G . ~ ( z )  is indeed the c o v a r i a n t  t ensor .  An � 9  

t e n s o r  with respect to G . ~ ( z )  is given by the relations 

- 8~  ( 3 . 3 )  G " ~  = O ~ o ( z ) G a " ( z ) -  . 

Then 

OZ ;~ a z  ~ 
n o .  

~  o ~  ~ g(s)(X)G.~(z)  

and therefore, the construction 

Oz ~ OZ" OX ~ OX n 
per  _ _  _(s) 

Ox p Ox ~ g(s)  a z .  Oz ~ g~" 

c)z A ~ o x  ~ . , 
~ .  p - -  k s )  

a x  p g(s)  3 z  ~ g~n 

OZ h OX p 
- a ~  

a x  p 8 z  ~ 

OZ A Oz ~ 

Ox o a x  ~ g(%~ = G a" (3.4) 

is just the contravariant tensor. 
In accordance with the definition (2.8) in space-time with a stochastic 

metric the K r o n e c k e r  s y m b o l  6 .  is a mixed tensor of  the type T .  = U . V ,  

since 

a z  a o x  ~ o z  ~ o x "  

8 .  0 x .  o z  ~ Ox ~ Oz ~ -  8~ (3.5) 
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In addition to a scalar and zero, the Kronecker symbol 6~ (at the same 
time its direct products) is the unique tensor whose components are the 
same in any system of reference. 

3.3. Tensor Algebra 

As usual, in order to construct tensor equations which are invariant 
under arbitrary transformations of coordinates, one has to know how new 
tensors are formed from others. This is achieved by means of some simple 
algebraic operations: 

1. S u m m a t i o n .  The sum of tensors with the same upper and lower 
indices is a tensor with the same indices. Let A~ and B~ be two mixed 

- a A ~  + b B ~  for any scalar constants tensors. Let us consider their sum T~ - 
a and b. Then, T~ is a tensor, since 

OZP~ OZ ~ Og'~ OZ c" 
'" '" A ~  + b - -  o 

T T = -  aA~ + b B ~  = a --Oz p Oz'" Oz o Oz,~ B ~  

OZ'~ OZ ~ 

- Oz p Oz,~ T ~  

2. Direc t  Product.  The product of components of two vectors leads to 
a tensor, the upper and lower indices of  which consist of all upper and 
lower indices of the two initial ones. For example, if A~ and B e are tensors, 
the combination T~ p is also a tensor, i.e., 

T ~  ~ A ' " B ' ~  - A * -  Oz* x OZ '~  ~ 
OZ x OZ '~ OZ ~ 

OZ tlx OZ ~ OZ tp 

_ _  T ~  ~ 
OZ A a z  p~" o z  ,~ 

3. Contract ion.  Equating the upper and lower indices and summation 
over their four-values gives a new tensor in which these two indices are 
absent. For example, if T~ ~~ is a tensor from which one can form a new 
quantity T "p ~- T~ p~, then T up is also a tensor, since 

Oz 'u 3 z  ~ Oz 'p 3 z  'v 
T'~'"= T ~ p  ~ _ - -  T~" ~ 

Oz ~ Oz '~ Oz" Oz ~ 

OZ'u  OZ 't' OZ'~" OZ'o 

- -  O z , ~  OZ n T ~  n a -  Oz ~ Oz ~ 
TX~ 

The above-mentioned three operations may always be united in a different 
way. The most important combined operation leads to lowering and  raising 



630 Namsrai 

the indices, which is achieved by means of the stochastic metric tensor G~.. 
For instance, let T i  p and S ~  be tensors; then the new formations 

p ~ / ~ v  p S ~ - -  G~T~ p and R~ p-- G S~,~ 

are also tensors in accordance with rules 2 and 3. Owing to relations (3.3), 
the raising and lowering of  both the indices for the metric tensor G~,~ are 
carried out by the following rules: 

G ~ G * ~ G . ~  = G ~ G ~ G  ~ = G ~ 6 ~  = G ~ 

and 

G ~ G ~ Q ~  = G ~ O ~ . G  ~ = Q ~  = G ~  

This rule of  lowering and raising the indices for G . .  again gives the metric 
tensor and its inverse, respectively. 

3.4. Tensor Density 

An important example of nontensor values is the determinant o f  the 
metric tensor 

= - D e t  G ~ ( z )  

The rule of  metric tensor transformation may be regarded as the matrix 
equation 

0 2  p OZ ~ 

Calculating its determinant, we have 

c '  = Ioz / az'12 a (3.6) 

where [az/az' I is the Jacobian of  the transformation z'" ~ z", i.e., the deter- 
minant of  the matrix azO/Oz '~'. As in the usual case, if we do not take into 
account an additional multiplier caused by the Jacobian, we call a quantity 
of the type of  G a scalar density in the general system of reference z ~" with 
the stochastic metric O,~. Similarly, a value that transforms as a tensor but 
with additional multipliers from the Jacobian is called a tensor density. We 
call the number of  factors ]az'/azl in the determinant the weight o f  the 
density. For example, from expression (3.6) it follows that G is a density 
with weight - 2 ,  since 

Ioz/oz'l = l a = ' / a z l - '  

The latter is easily verified by estimating the determinant of the equation 

OZ ~ OZ ';t 

OZ 'x OZ" 
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Any tensor density with weight w can be expressed as a usual tensor 
multiplied by the coefficient G -~n .  For example, the tensor density F~ 
with weight w transforms by the rule 

Oz Oz ~ Oz,~ T~ 

Using (3.6), we find 

G,W/2F,g = az 't" az ~ ~ / 2 F ,  ~ 

An important role of tensor densities is defined by the fundamenta l  
theorem o f  integral calculus, which asserts that under an arbitrary transforma- 
tion of  coordinates z"--> z '~ the volume element d4z is replaced by 

d4z '= [dz'/dz[ d4z (3.7) 

Therefore the product of  d4z on the tensor density with the weight - 1  
transforms as a usual tensor. In particular, Gl/Zd4z is an invariant element 
of  the volume. 

There exists an important tensor density, the components of which are 
the same in all systems of  coordinates; that is the Levi -Civ i ta  tensor density, 

+ i  for even rearrangment of  indices 
e ~x~= - for odd rearrangement of indices 

if any pairs of indices coincide 

This quantity is the tensor density with weight - 1 .  Multiplying e ~'"~ on 
G - i n ,  one can construct the usual contravariant tensor. Moreover, it is 
possible to form the covariant density by means of lowering its indices: 

= Q.Q  

This expression is antisymmetric over indices, and therefore, it is propor- 
tional to eP~n~; the coefficient of  proportionality is - G ,  so that 

eo~n~ = - Ge p~n~ 

One can easily verify that eo~,e is the covariant tensor density with weight - 1. 
Finally, we present a calculation method for the determinant of the 

metric tensor. Let the stochastic metric Gu~ be a tensor of  the type 

Then, by definition, 

G = - D e t  G , ,  = Det(1 - A )  = I] (1 - hj) (3.8) 
J 
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- -  1 o where numbers hi are eigenvalues of the matrix A~,~ - e,~(x)+ae,,(x)e~o(x). 
After a simple transformation,  expression (3.8) reads 

G = e x p [ ~ l n ( 1 - a ' ) ] = e x p [ - ~ _ - t l 2 t ~ ] n  

= exp - 52 Tr A" 
?1=1 

= exp[- �88 Tr e'2] e x p [ -  ~ 2  1 Tr A~ 1 

= e x p [ - � 8 8  ,2 1~ -2  1 e - ~  l r  l~ - 5  Tr A 3 . . . .  ] (3.9) 

Thus, 

and 

G 1/2 ~ 1 - ~  Tr e '2 -�88 Tr e2+ O(E  3) 

ln~--G = -�89 Tr e '2 - ~ Tr e 2 

where we have used the definitions 

Tr e '2 = Tr e~(x)e~,o(x ) =- e~(x)e~o(x ) 

Tr e z = Tr e,~(x)eo~(x) 

It should be noted that the rules of  the tensor algebra are easily extended 
to the case of  tensor densities: 

1. The sum of two tensor densities with the same weight w is a tensor 
density with weight w. 

2. The direct product  of  two tensor densities with corresponding 
weights Wa and w2 gives a tensor density with the weight Wl+ w2. 

3. The contraction of  indices for a tensor density with the weight w 
leads to a tensor density with same weight w. From rules 2 and 3 it follows 
that lowering and raising the indices does not change the weight of  the 
tensor density. 

3.5. Transformation of the Attine Connection in Space-Time with 
Stochastic Metric 

It is well known that apart  from trivial tensor quantities and densities 
in physical laws, nontensor  values may appear,  among which the affine 
connection plays an important  role in the gravitational theory. In space-time 
with a stochastic metric the affine connection has the same form as in the 
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usual theory, and therefore, we follow the standard method for transforma- 
tion of  the affine connection. Now we separate its nonhomogeneous non- 
tensor term. By definition, 

a z  ~ a2~ ~ 
F A p.u 

O~ <~ Oz ~ Oz" 

where s c~ is the local inertial system of  coordinates. In another system of 
coordinates z'" the value of F ~  acquires the form 

r;% = az'* a~C 
a~ <~ Oz '~< a z ' "  

a z  ~ a ~ "  a z  '~ \ O z ' "  a z  / 

+ Oz,~ a z  p o~ <~ \ a z  '~ Oz '~ Oz" Oz <" Oz '~< a z  / 

Taking into account definition (2.7), we find 

az'; '  o z "  Oz ~- o z  ';~ 02z  <" 
V'~< . . . .  r ~ +  a z ' "  (3.10) 

Oz p Oz '~ Oz'"  Oz ~ Oz ' "  

Here the last term makes F ~  the exact nontensor value. 
Tensor analysis permits us to establish a simple connection between 

F ~  and G, . .  Notice that 

o o I oz~ oz ~] oQ<, oz ~ azO oz ~ 
oz'" G""=o~'~ ~ Q ~ z ' ~  oz'"l oz" o~ '~ oz'" o~ '~ 

aZz p oz  ~ o22o az  ~ 
4- 

+ G~ a z ' "  a z ' "  G~ a z  '~ a z  ''< 

and therefore, 

o o~o o , o o~ ~ oz~ d i  ~loG~ooo, oa~<A~i 
~z,--7 ' +Tz,~ G ~ . - o z , .  G L - o z , .  oz'~ oz'" \ ~  az ~ 77Tz ~ I 

O2 Z p az ~ 

+ 2Go<'az,~< az ,~  o z  TM 

From which it follows that 

l~p Oz P az TM Oz '~ c G  

where 

az ,A ~2 zP 

OZ # az '~ az ,v 
(3.11) 

=~ (3.12) 
~ '  La--~- az" az ~ J 
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Subtracting (3.11) from (3.10), we see that quantity ~ F,~-{~,~} is a tensor, 
since 

F~,, - o (3.13) 
Oz p Oz ' "  Oz '~ F ~ -  P TO" 

The modified equivalence principle of the second level tells us that there 
exists a quasilocal-inertial system of reference in which effects of external 
gravitational fields are absent. According to the c o r r e s p o n d e n c e  p r i n c i p l e  

employing the equivalence principle of the first level, in this system of  
reference when an external gravitational field disappears, the affine connec- 
tion F ~  and the stochastic metric G ~  coincide with x _(s) y ~  and g ~ ,  respec- 
tively. Since by definition (2.24) in this system of reference the expression 

becomes zero and at the same time is a tensor value, so that it should 
disappear in any arbitrary chosen system of  reference, and therefore, 

Now we give another expression for the nonhomogeneous term in the 
transformation rule of F ~ .  Differentiate the identity 

OZ 'x OZ p < 
Oz p OZ '~' 

with respect to z '~, from which it follows immediately that 

OZ ,h 02Z p OZ p OZ cr 02Z th 

(3.14) 
Oz ~ Oz '~ Oz '~ Oz '~ Oz '"  Oz p Oz ~ 

Therefore, expression (3.10) may be written as 

Z ~ 02ztA F'~= Oz'~ a z *  Oz V p Oz p Oz ~ 

Oz ~ Oz '"  Oz '~ F , ~  Oz,~ O z , ,  Oz o Oz ~ (3.15) 

This is just the expression which would be obtained by carrying out the 
inverse transformation z ' ~ z  ~ and solving the obtained equality with 
respect to F ~ .  

Now we are able to use the general covariance principle in order to 
prove that an "almost freely" falling particle satisfies the following e q u a t i o n  

o f  m o t i o n :  

d Z z "  d z  ~ d z  ~ 
dz 2 ~-F~;~(z) d'r dr  =0  (3.16) 
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where the proper  time d r  2 is given by formula (2.11). First notice that 
equations (3.16) and (2.11) are valid in the absence of gravity, since 

F~A(z) ~ y~A(x)  and G . ~ ( z )  (s) g~v(x) 
(3.17) 

d2x '~" dx"  dx  x 

dr 2 ~'Y~A(x) d~ d r  0 

But this coincides with the equations that describe a "free" particle in the 
special theory of relativity modified in accordance with our assumption. 
Further, notice that (3.16) and (2.11) are invariant under an arbitrary 
transformation of coordinates, since 

a2z,  oz, a2z o2z,  
d'r 2 - d r  \ Oz ~ dz  ] Oz ~ d T  + - oz  ~ oz  A dr  d r  

whereas relation (3.15) leads to 

dz  '~ dz  '~ Oz'~ dz  A dz  p 
r ' ~  _ v 

dr  dr  Oz ~ F Ap dr  d r  

02 z '~ dz  A dz"  

Oz ~ Oz x d r  d r  

Adding these two equations, we find that the left part of  equation (3.16) is 
a vector, i.e., 

= oz'  .\__dT_+ az I az 3 
" ~  dr  d'r Oz a dz  d r /  (3.18) 

Thus, equations (3.16) and (2.11) turn out to be exactly covariant in 
space-time with the stochastic metric G,~. The general covariance principle 
of  the second level tells us that relations (3.16) and (2.11) are valid in 
arbitrary gravitational fields, since they are indeed satisfied in quasilocal 
inertial system of references. Moreover, we recall the analogous situation 
which asserts that relations are valid in all systems of reference (including 
those with stochastic metric) if they are valid in any system. 

3.6. Covariant Differentiation 

As in the usual theory of tensor analysis, we can easily generalize the 
definition of  covariant differentiation in space-time with a stochastic metric. 
Generally speaking, differentiation of a tensor does not lead to a new tensor. 
Now we turn to the definition of  covariant differentiation by using the affine 

~ for connection F ~ .  In this connection it should be noted that, using y ~  
an additional fictitious "gravitational" field, one may also formulate 
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covariant differentiation with respect to variables x ~ with stochastic metric 
g(S) Thus, consider the contravariant vector V ~, the transformation rule of  Ate,- 

w h i c h  is 

V'~ = 0 z'~ V ~ 
OZ" 

Differentiation of  this equality with respect to z 'a gives 

3 V  '~ Oz '~ Oz p rgV ~ 02z '~ Oz p 
- -  V ~ ( 3 . 1 9 )  

- + O z , A  0 Z  '~ OZ v OZ ''{ OZo OZ u OZ p 

The first term on the right-hand side of  this equation coincides with what 
would have arisen if the expression OV'*/Oz ~ were a tensor, but the second 
term breaks the tensor character OV"~/Oz '~. Although OV~/Oz  ~ is not a 
tensor, by means of  it one can construct a tensor. Using equation (3.15), 
we find 

oz o2z'. oz v 
F ' ~  V TM \ Oz ~ Oz,~ Oz,~ Oz o Oz ~ Oz,~ Oz,~ ] Oz a 

OZ 'Ix OZ p oZz  tl~ OZ p 
p 

- Oz ~ Oz 'A Fo~ V~ V ~ Oz p Oz ~ Oz,~ (3.20) 

Adding (3.19) to (3.20), we see that nonhomogeneous  terms cancel each 
other and the result reads 

O V '~ , .  ,~ Oz '~" Oz ~ 0 
Oz,~ FFA~V - O z  ~ Oz,A +FoaV ~ (3.21) 

Thus, we arrive at the definition of the eovariant  derivat ive  in space-time 
with a stochastic metric 

OV ~ 
V;~-= ..... +F~aV a (3.22) 

Oz x 

and equation (3.21) tells us that V,~ is a tensor, since 

,~ _ O Z ' ~  Oz p 
V;A - Oz ~ Oz,A V;~ (3.23) 

We can also define the covariant derivative of a covariant vector U~. 
Recall the rule of  t ransformation 

i 0 Z ~  

v =0-Sv vo 
Differentiating this relation with respect to z '~, we get 

OU~ Oz" Oz ~ SUp+ 02z ~ 

Oz,~ - O z , .  Oz,~ ~  ~ o z , .  Oz,~ U o (3.24) 
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Further, from (3.10) it follows that 

( o z  '~ o z  ~ oz  ~ oz  '~ o2 z �9 ~ ~  
r , A  r r , -  - -  F~,.-~ - -  " 

~ '~" '-" ~ - \ o z"  o z  ''~ o z  '~ o z  ~ o z ' "  o z ' V  ~ U~ 

OZ p OZ ~ 02Z p 

- O z ' "  Oz TM F;~U~ ~ Oz'" Oz TM U~ (3.25) 

By subtracting (3.25) from (3.24), the nonhomogeneous terms cancel and 
we obtain 

OU'~ F~.'~ U~' - Ozp ~ (~ (3.26) 
Oz '~ Oz '~ Oz '~ \o~  

Thus, we are able to introduce a definition of the covariant derivative of 
the covariant vector 

ou. 
- r , ~  uA (3.27) 

g ~ ; ~ , -  Oz~, 

and expression (3.26) tells us that U~;~ is a tensor, since 

OZ p c~Z ~ 
u '  g , ~  

# ; v  OZ, ~ OZ,~ , 

Extension of the given method to the case of a general form of tensors 
encounters no difficulty. For example, let T~ ~ be a tensor of  the type 
V~'W~U~; then its covariant derivative is given by the standard version: 

. ~ _  0 T ~ + F .  T . ~ +  ~ ~ _  ~ ~ T ~ ; p - O z  p p,, ;t F p v T A  F A p T ~  (3.28) 

where Fo~, is constructed by means of  the stochastic metric G , .  and it is 
easy to verify that expression (3.28) is indeed a tensor. Moreover, combina- 
tion of covariant differentiation with the algebraic operations defined in 
Section 3.3 leads to the analogous rule of the usual differentiation [for 
details, see Weinberg (1972)]. 

Notice that the covariant derivative o f  the stochastic metric tensor is 
equal to zero for any system of reference. Indeed, by using a definition of 
the type (3.28), we get 

a . o  . = 
�9 OZ;~ 

Further, from equation (2.19) it follows that this quantity disappears: 

a~x~; A ~ 0 



638 Namsrai 

in space-time with a stochastic metric. In accordance with our construction 
(Section 1), it turns out also to be zero in the quasilocal inertial system of 
reference, when F ~  ~ y ~  and G.~ ~ g ~  and the tensor is equal to zero 
in one system of reference; it also becomes zero in all systems of reference, 
including those with a stochastic metric. 

3.7. Covariant Differentiation along the Curve 

Up to now we have considered tensor fields defined on the whole of 
space-time. Here we consider a tensor T(T) given along the curve Z~(r ) .  
Such types of  tensors are the momentum P~(~') and the spin S,(T) of  an 
individual particle. Of  course, for such tensors it is not possible to talk 
about covariant differentiation over z ~, but we can define the covariant 
derivative over the invariant quantity T by means of  which the curve is 
parametrized. 

Let us consider the contravariant vector A~(T) transforming by the rule 

Oz '~ 
A ' " ( r )  = 0--~- A (r)  (3.29) 

where the partial derivative Oz ' " /Oz  ~ is calculated at Z ~ = Z~(T), SO that it 
depends on r. Differentiating (3.29) over r, we obtain two terms 

d A " ~ ( r )  Oz'"  dA~( . r )  d z  ;~ 02z,, �9 

d r  - d z  ~ ~ § d r  Oz ~ Oz ~ A ~ ( r )  (3.30) 

The second derivatives OZz'"/Oz ~ Oz A are similar to the term that breaks the 
homogeneity of  the t ransformation rule (3.15) for the affine connection, so 
that we can define the covariant derivative along the curve Z~( r )  as follows: 

D A  ~" d A "  + F~A dzx  A ~ 
D ~  = d r  ~ (3.31) 

(3.15), (3.29), and (3.30) show that this quantity is a Then expressions 
vector, since 

D A "  ~ Oz ' ,  D A  y 
(3.32) 

D'r - Oz ~ D z  

The similarity of  formulas (3.31) and (3.22) for the covariant derivative of  
the vector field is obvious. 

Analogous considerations allow us to introduce the covariant derivative 
along curve Z " ( r )  for the covariant vector Uu(r): 

DU~, d U  N • d z  ~ 
= d r  - r ~ , , 7 -  U~ (3.33) D r  a T  
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Expression (3.10) permits us to verify easily that the obtained value is 
indeed a vector, 

DU' .  Oz ~ DU~ 
- (3.34) 

Dr Oz'" D r  

Notice that all properties of  the covariant differentiation expounded 
in Section 3.6 can be easily extended to the case of  differentiation along 
the curve. One can consider the case when the vector A ' ( z )  transferring 
along the curve (trajectory) of  the particle does not change with the " t ime"  
variable r if the particle is considered within the system of  reference x~(r) ,  
i.e., in the quasilocal inertial system of reference with stochastic metric -( ')  ~ / x v  �9 

As seen in Section 1, in this system of reference x ~ 

D A  ~ 
= 0  

D r  

This assertion is valid in all systems of references in accordance with the 
covariant character of  differentiation along the curve x~(r).  Then the vector 
A" satisfies the first-order differential equation 

dA " dx A 
dz = - F ~  ~ A (3.35) 

which defines vectors A"  for all r if A" is defined at some initial value 
of r. In this case, it says that vector A ' ( r )  on the curve x~(r)  is defined by 
means of  parallel translation. Thus, one can define any tensor on the 
curve x~(r) ,  provided that its covariant derivative along this curve has 
disappeared.  

3.8. Gradient, Curl, and Divergence in Space-Time with Stochastic Metric 

Here we consider some consequences of  the definition of covariant 
differentiation in space-time with a stochastic metric. In this case, no 
essential difference in the calculation of gradient, curl, and divergence 
appears  with respect to the usual theory of the tensor analysis. There exist 
particular cases when the covariant derivative has a very simple form. For 
example,  the covariant derivative of a scalar quantity coincides with the 
usual gradient: 

T:. = 0 T/Oz" (3.36) 

Another simple particular case is the covariant curl Recalling the 
definition 

, = -ou . /o z  - r . ~ u .  S ~ . v  v A 
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and taking into account the fact that F ~  is symmetric over indices/x and 
v, one can easily see that the covariant curl coincides with the usual one, 

U~,; v - U~;~ = 0 UJOz  ~ - O U~/Oz ~" (3.37) 

For completeness,  we consider the covariant divergence of the contra- 
variant vector 

Notice that 

v.". =- o v " / o z  '~ + r X .  v ~ (3.38) 

rx .  =  o.ojoao  / oao. oG.2 I = oGo. 
\--~z ~ oz" -~z ~ ] 2 oz" (3.39) 

This is easy to calculate if we use the definition 

[ O M ( z ) } = o _ @ l n D e t M ( z )  (3.40) Tr M - l ( z )  Oz---- 2 

for an arbitrary matrix M, where by Det we take the determinant and by 
Tr we take the trace, i.e., the sum of diagonal elements. Following Weinberg 
(1972), to prove (3.40), consider the variation of Det M with respect to the 
displacement of  coordinates z ~ by the value 6z~: 

t3 In Det M --- In D e t ( M  + 6M)  - In Det M 

= ln [De t (M + 8 M ) / D e t  M]  

= In Det M - ~ ( M  + 6M)  

= In Det[1 + M -1 8M] 

ln[1 + T r  M -~ 8M] --) Tr M -l 6M 

Insering the coefficient 6z x into both sides of  this expression, we see that 
the relation (3.40) holds. Making use of  (3.40) for the case when the matrix 
M is equal to Gp, and taking into account (3.39), we find 

F~x = 1 0 In G/Oz A = G -1/2 c3( G)1/2/02 ~ (3.41) 

From (3.38) it follows that the covariant derivative is 

V~, = G -~/2 0( G ~/2 V~) / Oz ~ (3.42) 

a direct consequence of which is the covariant form of Gauss theorem: if 
V" becomes zero at infinity, then 

f d4z G1/Zv~ = 0 (3.43) 

Notice that due to the appearance of the coefficient G ~/2 in (3.43), the 
volume element daz(G)  1/2 is invariant. 
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One can also use (3.41) for the simplification of a formula for the 
covariant derivative of a tensor quantity. For example, by definition, 

T:~=OT /az +F~AT + F ~ T  

and using (3.41), we find 

T;U ~ G -1/2 O( G 1/2 T ~ ) /  Oz ~ + F ~ T ~ (3.44) 

In the particular case T "a = - T  A" the last term disappears, and therefore, 

a;~" = G -'/20(G1/2a"")/Oz ~" (3.45) 

where A ~ is an antisymmetric tensor. Moreover, the important formula 

A~.a + A;~.~ + A~.~ OA~ OA~ OA~,~ 
= + Oz~, + (3.46) 

, , , O z  A O z  ~" 

may be obtained for the covariant differentiation of the antisymmetric 
covariant tensor A ~  = - A ~  in space-time with a stochastic metric. 

4. INFLUENCE OF GRAVITY WITH STOCHASTIC METRIC 
ON PHYSICAL PROCESSES 

In previous sections we presented a concrete method of introducing 
fictitious (or background radiation) and true gravitational fields into physical 
systems from the point of view of a stochastic metric. Here, we study the 
influence of both these fields on the physical processes and explain their 
general and specific properties in the framework of the general covariance 
principle. To obtain equations of mechanics and electrodynamics in the 
presence of arbitrary gravitational fields, we must first write these equations 
in the special theory of relativity, and then explain how any quantity entering 
into these equations is changed under arbitrary transformations of coordin- 
ates, and replace: 

_<s) for a background radiation field e ~ ( x )  (a) ~p-> g ~  
(b) _(s) ~ .  ~ G~. for an external gravitational field with stochastic metric 

and all derivatives by covariant ones. 
For example, for a vector field A ~, the corresponding formulas take 

the form 

dA'~ D(1)A~ dA'~ ~ dx~ A" 
(c) --~z ~ D(,) ~ -  dz ~-Yg" d-~- 

for the background radiation field e~(x) ;  and 

dAA DAA dA~+ A dZ~A v 
(d) ~-~-=~ D~ - dr  

for an arbitrary gravitational field with stochastic metric. 
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Equations obtained in this way will be generally covariant and justified 
in the absence of gravity, and therefore they are valid in arbitrary gravita- 
tional fields provided that the given system is sufficiently small with respect 
to the scales of the fields. 

4.1.  M e c h a n i c s  of  a Part ic le  

Let us consider a mechanical system in the special theory of relativity. 
When external fields are absent, a particle possesses permanent four-velocity 
U ~ and constant spin value S~, i.e., in the inertial system of reference ~:~ 

dU~/d~'=O ( U ~ - d ~ / d r )  (4.1) 

dS ,daz  = O, d'r 2 = -~7,~ d~ '~ d~ ~ (4.2) 

Recall that spin S~ is defined in the rest system of the particle, where its 
value is S~ = {S, 0}, so that in an arbitrary Lorentz system of reference the 
condition 

S , U  '~ =0  (4.3) 

is fulfilled. 
Further, according to the prescriptions of the modified general covari- 

ance principle, we must write these equations in an arbitrarily chosen system 
of reference z" by means of covariant derivatives D U " / D ' r  and DS, d D z ,  
which become the usual ones when F ~  = 0. Thus, the correct equations 
giving the position and spin of the particle in an arbitrary system of reference 
z" are 

D U ~ ' / D z = O ,  D S J D z = O  (4.4) 

or, in more detailed form, 

dU~ / d~" + F~;, U" U • = 0 
(4.5) 

A u d S J d r -  F ~  U S A  = 0 

Moreover, equality (4.3) should be written as 

S ~ U " = O  (4.6) 

In expressions (4.5) and (4.6) the vectors U ~ and S, are given by 

u ~ - (oz~/o~ =) u ;  = oz~ /o~  

(4.7) 
s~ =- (a~=/ar  

where U;  and Sf~ are the components of U ~ and S~ in the freely falling 
coordinate system ~". In particular, in the presence of a fictitious radiation 
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stochastic field e , , ( x )  only, equations (4.5) and definitions (4.7) take the 
form 

d u ~ / d r +  ~ ~'u ~ y~xu = 0 
(4.8) 

A v d s J d r -  T,~u s~ = 0 

and 

u ~ = (ax" /a~  ~) U~,  s ,  = ( O ~ / a x " ) S f ~  (4.9) 

Here the Jacobian of transformations a ~ / a x  ~, ax~/a~ ~, and the "affine" 
connection Y~ are given by formulas (1.10), (1.12), and (1.6a) [or (1.6b)], 
respectively. In Section 1 we considered some consequences of the first 
equation in (4.8). Notice that according to the general covariance principle 
discussed in Section 3.1, equations (4.5) are valid in the presence of gravita- 
tional fields, since they are general covariants and are valid in the absence 
of gravity, i.e., equations (4.5) become equations (4.1) and (4.2) when F~, 
disappears. Thus, we see that in space-time with a stochastic metric, the 
equation of motion and spin of the particle are determined by the same 
form of equations as in the usual theory of gravity. 

When an external force exists, then the covariant differentiation 
D U ~ / D r  is not equal to zero, and instead of the first equation in (4.5) it 
is necessary to write 

DUd '~Dr  = ( 1 / m ) f  ~ (4.10) 

where m is the mass of the particle and f ~  is a contravariant vector of force 
which may be written in an arbitrarily chosen system of reference z~': 

f "  = (dz~/Os 

by using its value f7  in the freely falling system of reference s One can 
write equation (4.10) in the usual form 

m dZz~'/dr 2 = f "  - mF~A(dz~ /dr ) (d z* /d r )  (4.11) 

The term containing F v~ plays a gauge potential role in the presence of the 
stochastic metric G~,~(z). 

It should be noted that, in accordance with the correspondence 
principle, when an external gravitational force disappears, then equation 
(4.11) becomes 

m d 2 x ' / d r  2= F ~ -  rny~A(dx" /dr ) (dxA/dr )  (4.12) 

for the gravitational vacuumlike fictitious radiation field e~,~(x), where 

F ' ( x )  = (Ox~'/O~P)f~ (4.13) 

is an external force of nongravitational origin. For the cases of (4.12) and 
(4.13), the stochastic metric is given by the formula (1.11). 
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4.2. Electrodynamics in Space-Time with Stochastic Metric 

Recall that in the absence of gravitational and background additional 
fictitious fields Maxwell's equations in electrodynamics transcribe as 

OJ~/O~ ~ = - . ~  (4.14) 

0/3t~,/0r ~ + 0/3r~/0~ :~ + 0/~o/0~ :v = 0 (4.15) 

where J~ is the four-vector {J,/~} and/~t3 is the tensor of  the electromagnetic 
field defined by the formula 

o 

F ~  = E2 - n 3  0 1 

E3 B2 - n l  

Assume that we define F "~ and J "  in arbitrary coordinates, providing that 
they lead to / ~ ~  and jTo in the local-inertial system of coordinates, and 
behave as tensors under arbitrary transformations of coordinates, i.e., if 
F~~ and a ~ are quantities measured in the local-inertial system of reference 
r then the relations 

,~. = Oz____~ ~ Oz ~ f f ~  and j~, Oz" j~ 
F -o o or 

are valid in any system of reference zL Thus, one can change equations 
(4.14) and (4.15) into the general covariance form by replacing all derivatives 
by covariant ones: 

F ; .  "" - - - J "  (4.16) 

F.. .a + Fx.;.  + F.A;. = 0 (4.17) 

Now indices should rise and fall by means of G~., but not ~7~o, i.e., 

FA~ =-- G~.G.~F ~" (4.18) 

where GA, is the stochastic metric given by expressions (2.12) and (2.13). 
As in the usual theory, in our case electromagnetic stresses F ~" and F~, in 
gravitational fields are antisymmetric and therefore, by using formulas (3.45) 
and (3.46), we can write the Maxwell equations in the form 

ov/G F~'~/Oz ~" = -v~-G JV (4.19) 
A v / t x OF,./Oz + o F a J o z  +OF~,,Oz =0  (4.20) 

Equations (4.16) and (4.17) are valid in the absence of gravity and are 
generally covariant. Therefore, according to the general covariance prin- 
ciple, they are valid in arbitrary gravitational fields, 
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Now we define an electromagnetic force acting on a particle with the 
charge e. In the absence of  gravity it has the usual form 

f~f -~- eff:~3( ds / dr) (4.21) 

from which it follows immediately that in an arbitrarily chosen system of 
coordinates the electromagnetic force in any gravitational field is 

f~" = eF~( dz~/ d.r) (4.22) 

where 

F~ =- G~xF ~a (4.23) 

It is easy to see that formula (4.22) is written in the right form, since, 
according to the general covariance principle, equation (4.22) is reduced 
to (4.21) in the local-inertial system of Minkowski coordinates and is the 
general covariant. Moreover, f ~  and dz~/dr are vectors and F~ is defined 
as a tensor. 

As a calculation example, we write Maxwell's equations in a given 
constant fictitious "gravitational" field e ~  (x) in the three-dimensional form. 
For this, let us introduce the three-dimensional vectors E and B connected 
with components of the covariant tensor F~,~ in the same form as in 
Minkowski coordinates ~:~: 

F,2 = Bz, F,3 = -By, F23 = B~ 

F,o = Ex, F2o = Ey, F3o = Ez 

where we have used the simple connections F ~176 Foo and F ~ = -Foi  (i = 
1, 2, 3) between components of co- and contravariant tensors. Analogously, 
we link components (-g(o~o))l/2F ik with the components of vectors which 
we denote by D and H. By simple algebraic transformations one can then 

,u.A vp  represent the connection F'~=g~s~gc~)Fxo in the form of two vector 
relations: 

D = h-~/2E+[H• B =  h-~/2H+[gxE] (4.24) 

With these definitions the four-equati0ns (4.19) and (4.20) can be written 
in the form of three-dimensional equations 

r o t E = - ( 1 / c )  OB/Ot, d i v D = 0  

rotH=(1/c)  OD/Ot, d i v B = 0  

in which vector operations are performed in the three-dimensional space 
with metric yij given by (1.34). In expression (4.24) we have used the 
following notations: 

h = -g(o~ ~ and g = gi = -~0i"(~)//soo"(~ 
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An averaging procedure for these quantities was given in Section 1.4, from 
which it is easily seen that (g)= 0. Thus, in the whole space-time obtained 
by using the averaging procedure over one with stochastic metric (s) g~,~, there 
does not exist an isolated direction connected with the "arrow" of the vector 
g, i.e., all its arrows have equal rights. 

Now we calculate the current vector J ~ in space-time with the stochastic 
metric G~,~. In the special theory of relativity it has the standard form 

j "  = ~  e. f (~(4)(~-- ~t/) d~:. ~ (4.25) 

where integration is carried out along the trajectory of the nth particle. In 
an arbitrary system of coordinates, the four-dimensional 6-function is intro- 
duced in the following manner: 

f d4g~o(g) = ~) (Zl) 6(4)(Z-- z1) 

Since Gl/2d4z is scalar, then the combination G-1/26(4)(z - zt) should also 
be scalar, which is reduced to the usual a-function within the special theory 
of relativity, where G = 1. Thus, the covariant vector which becomes j~ in 
the absence of gravity is 

J ' ( z )  = G-1 / z ( z )  ~n e. J ~(4)(Z--Zn) dz~. (4.26) 

Let us calculate its average value in the fictitious "gravitational" field e~,~(x). 
(s) In this case, in (4.26) it should be replaced by G,~ g , , ( x ) ,  the latter is 

given by (1.11). Thus, (4.26) takes the form 

J~'(x) = g-~/2(x) ~ e, I 6(4)(x-x") dx~" (4.27) 

To average this expression, consider the following chain identities: 

I = g-l/2(x) dx~ = g-1/2(x) dr(dx~/d.r) = g-~/2 d'r U~ 

= g-l~2 dr(ox~,/O~P)u~ 

where uP. is the velocity of the nth particle in the local-inertial system of 
reference. Further, making use of definitions (1.12), (1.28), and (3.9) in the 
weak-field limit, we obtain 

(i) =dt({[8~+8~E2(x)  ! ~, 3 ~ ~, - ~ .  (x~ + ~ ( x . ) ~  ~ (x . ) ]  

•189  p ~ a ~(x~ 
_ lA-3 /2e~  ~ ,~ a o (x . )ep~(x . )u .u .u .u .]})  (4.28) 

where 
2 I o + 1  E2(x )  = 1 Tr e'2d - �88 Tr e = ~e,,(x)e~p(x) ~e~,(x)e~(x)  
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The averaging procedure in (4.28) is easily carried out by using the definition 
of taking the trace of  the matrix ~.v(x) and its covariance (correlation 
function). For example, in the pseudo-Euclidean case (1.30) and the 
Euclidean case (1.77), the quantities 

(Tr e'2)~ = D~,p~(0) and (Tr e2)~ = D~v.~(0) 

acquire the forms 

(Tr e'2)~ = 5/)(0), (Tr e2)~ = ~/~(0) 

and 

(Tr e'2)~ = 10D(0), (Tr e2)~ = 10D(0) 

respectively. Here the function /)(0) is defined by (1.31). The result reads 

~dx~[1 + ~ / ) ( 0 ) ]  for the pseudo-Euclidean covariance 
(I)~ = [dx~[1 + ~ / ) ( 0 ) ]  for the Euclidean covariance 

and therefore, the corresponding averaged electromagnetic current (4.27) is 
given by the simple formula 

J~(x) = j~(x) x {[[ll +~21)(O) ] + ~ / ) ( 0 ) ]  (4.29) 

where j~ (x) is the electromagnetic current in the special theory of relativity. 
Expression (4.29) may be understood as a change of  the charge value of 
the nth particle: 

' ' - e.[1 +1~/)(0)] (4.30) e,, ~ e.  = e.[1 +~s or e .  - 

depending on taking a concrete form for the Euclidean (or pseudo- 
Euclidean) covariance of  the stochastic field e.~(x). 

Thus, we see that in the fictitious "gravitational" background field 
e.~ (x), along with the value of  the particle mass (see Section 1.4) its electric 
charge also undergoes a slight change. 

Finally, notice that the conservation law Oj~/O~ ~=0  of the special 
theory of  relativity in the scheme with a stochastic metric has the form 
J:~, = 0, or, in accordance with (3.42), 

o(G~/2J~)/Oz ~ = 0 (4.31) 

The multiplier G -1/2 in (4.26) is to compensate for the G 1/2 in (4.31), so 
that (4.31) expresses the constancy of the electric charge e,. 

4.3. The Energy-Momentum Tensor 

In space-time with a stochastic metric the construction of  the energy- 
momentum tensor is not difficult. It is achieved by using the standard method 
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of the general theory of relativity. As usual, density and energy-momentum 
flow are combined in the symmetric tensor t ~e satisfying the conservation 
law 

at~ / o~ ~ = q~ (4.32) 

where q~ is the density of the external force f ~  acting on our system. In 
an isolated system q~ = 0. Let us define T "v and Qt~ as contravariant tensors 
which coincide with the corresponding quantities t ee and q~ in the absence 
of gravity with a stochastic metric G,~. Then the general covariant equation 
coordinated with (4.32) in the case of the local-inertial system of reference 
has the form 

T;~ ~ = Q~ (4.33) 

or, in, accordance with (3.44), 

G - X ~ 2 0 ( G 1 / 2 T ~ ) / O z  ~ = ~ ~ ~x Q - F ~ T  (4.34) 

The second term in the right-hand side of (4.34) represents the density of 
the gravitational force. As would be expected, this force acts on a system 
and at the same time depends only on the given system through its energy- 
momentum tensor. It is well known that the coefficient (G) 1/2 in (4.34) 
results from the fact that ( G ) l / Z d 4 z  is the invariant volume in space-time 
with the stochastic metric G~,~. 

The energy-momentum tensor of particles in the special theory of 
relativity is given by 

=~ m, I (d~/d.r) d~ 6(4)(~ : -  ~,) (4.35) t'~t3 

where integration is carried out along the particle's trajectory. By analogy 
with the definition of the electromagnetic current J",  we conclude that a 
contravariant tensor coordinated with (4.35) in the case where gravity is 
absent is naturally defined as 

G ,/2~ m, f (dz~/d~') dz~ 6(4)(z-z,) (4.36) T~,~= 

In the case of a background radiation stochastic field e~(x) ,  expression 
(4.36) takes the form 

=g8~/2~ m, f (dx~/dr) dx~ ~(4)(X--Xn) (4.37) T~ 

for which the averaging procedure can easily be carried out. 
Now we calculate the energy-momentum tensor of the electromagnetic 

field F "t3. Its form in the special theory of relativity is 

t a f t= - -v~  - ~ 7  ~ (4.38) 
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It is not difficult to verify that the contravariant tensor coinciding with 
(4.38) in the absence of  gravity is 

T ~ =  F~F~Z l ~  ~,A, -~,_, . ~ (4.39) 

For a system consisting of particles and radiation, the energy-momentum 
tensor is formed of two parts, (4.36) and (4.39). Returning to energy- 
momentum tensor (4.36), for  matter only, one easily calculates its integral 
form 

f T~OG~/2 =v~ m~(dz~/d'r)  d3z 
n 

where the sum involves all particles in the volume over which integration 
is carried out. It assumes that one needs to regard T "~ G ~/z as the spatial 
density of  energy-momentum. From this, in particular, one can find the 
energy, momentum, and angular momentum for an arbitrary system: 

P~'=- f T~~  1/2 d3z (4.40) 

J"~ =- f (z ~ T ~~ - z~T ~'~ G ~/2 d3z (4.41) 

However, these quantities are not covariant tensors and are not conserved, 
since T~'~G 1/2 is not preserved, i.e., 0(T"~G~/2)/0z ~ does not become zero, 
due to the fact that the exchange of energy and momentum between matter 
and gravity takes place. 

4.4. Hydrodynamics and Hydrostatics 

In the absence of gravity, the energy-momentum tensor of an ideal 
liquid is given by the following formula [for details, see Weinberg (1972)]: 

t ~ =p~7 ~ + ( p + p ) u ~ u  ~ (4.42) 

where u s is the four-velocity of the liquid and u ~  (1--u U = V U  O. 

The contravariant tensor, which is reduced to (4.42) in the absence of 
gravity, reads 

T u~" = p G  ~ + ( p + p) U ~ U v (4.43) 

where U ~ is the local value dz~'/dr for the liquid element in an accompany- 
ing system of reference. Notice that p and p are always defined as the 
density of  pressure and energy measured by an observer in the local-inertial 
system of  reference moving together with the liquid at the moment of  
measurement, and are therefore scalars. Let us consider the conditions of  
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the conservation of  the energy-momentum tensor, leading to the hydrody- 
namic equations: 

p .v  T;~ = ( Op / Oz~) G ~ + G-1/2{O[ G~/2( p + p) U~" U~]/ Oz ~} 

+ F~x(p + p) U"U ~ = 0 (4.44) 

The last term in (4.44) represents the gravitational force acting on the system. 
Notice that since rt~t3u~u ~ = -1  in the absence of gravity, we should write 

G~U~'U ~ = -1  (4.45) 

in the presence of  gravity with the stochastic metric G,~. 
As an example, consider the case when the liquid is placed in a state 

of hydrostatic equilibrium. Since the liquid does not move, expression 
(4.45) leads to 

U~ -1/2, UX=0 for ) t # 0  

Moreover, all derivatives of  G ~ ,  p, and p with respect to time variables 
disappear. In particular, we have 

F~o = - �89 "~ OGoo/OZ ~ 

and 

O[(p+p)U"U~]/Oz ~ = 0  

Multiplying (4.44) by G,x,  we get 

-Op/Oz ~ = ( p + p) 0[ ln ( -  Goo)l/2]/ Oz A (4.46) 

As in the usual case, this condition is trivial for A = 0, while for spatial-like 
value of A, expression (4.46) is regarded as the usual nonrelativistic condition 
of  hydrostatic equilibrium, where we should put p + p and (-Goo) 1/2 instead 
of  mass density and gravitational potential, respectively. Equation (4.46) is 
easily solved if pressure p is given as a function of  p. The solution has the 
form 

f dp(p) [p (p )  + p]- i  = - I n ( -  Goo)1/2+ const (4.47) 

For example, if the dependence of p(p)  is the power law p ( p ) ~ p N ,  then 
equality (4.47) for N # ! reads 

(p + p )p- '  ~ ( -  Goo) ('-N)/zN (4.48) 

but for N = 1, 

p ~ ( -  Goo) -(p+p)/zp (4.49) 
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In the usual theory of  gravity the latter shows that when p = p / 3 ,  gravity 
never supports the equilibrium of an ultrarelativistic liquid located in a 
finite volume, since in this case, expression (4.49) has the form 

p ~ (- aoo)-2 
Since p must be equal to zero outside the liquid, Goo is a singular function 
on its surface. However, in our case, when the fictitious radiation field 
e , , ( z )  is strong, i.e., it is quite possible to compensate a pure gravitational 
external field gO, by assuming 

g ~ = -~oo- k~(x)~o(X) = - l~(x)~o(X) 
then gravity with a high fluctuation of the space-time metric may support 
the equilibrium of  an ultrarelativistic liquid located in a finite volume, since 
the condition p -  0 is achieved by means of  the equality 

g~ - } E g ( X ) e o p ( X )  ( le ,~ , , (x ) [  >> 1) 

where the true gravitational metric go~ cc on its surface. 
Finally, it should be noted that contributions of  gravitational effects 

to any physical system due to a stochastic fluctuation in the space-time 
metric is calculated by the same method as used in the usual theory of 
gravity by using the general covariance principle. 

5. M O D I F I E D  EINSTEIN EQUATION IN SPACE-TIME 
W I T H  STOCHASTIC METRIC 

In this section we reconstruct Einstein's equation from the point of 
view of a stochastic fluctuation of the space-time metric. Here our goal is 
to find a gravitational field equation written in the general covariant form 
by using the equivalence principle for gravity itself. Before obtaining the 
corresponding field equation one must form the curvature tensor by means 
of  the stochastic metric and carry out some tensor algebraic operations. 
Now we turn to these complex problems. 

5.1. Redefinition of the Curvature Tensor 

In accordance with the usual theory of  gravity, we first construct a 
tensor from the stochastic metric tensor and its first and second derivatives 
in space-time with a stochastic metric. In order to do this, we recall the 
transformation rule of the affine connection (see Section 3), 

aZ '~ 022 '~ 
F x az~ az'V -- F '~ -4- azx 

"" az '~ az"  az" -P'~ az '~ a z ' O z "  (5.1) 
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This is just relation (3.10) in which the pr imed and unprimed coordinates 
are rearranged. On the right-hand side of  (5.1) there is a nonhomogenei ty  
damaging the tensor character of A F,~(z) ,  and therefore, we at tempt to 
separate it: 

O2Z t"r OZ 'T rh O Ztp OZ t~ 

az~ .Oz  ~ Oz ~ ~ Oz ~ az ~ F ~  (5.2) 

In order to avoid the left part,  we use the noncommutabi l i ty  of  partial 
derivatives. Differentiation over z * gives 

03 z ,~ / ~ z  ,~ Oz,O Oz ,,~ \ 

oz  

O z ' P [ a z  '~ Oz ''7 Oz r,~] 
- r ; ;  0L-Z~0z- ~ r ~  ~ -s 

,~ Oz'~ / O z  'v , Oz'" Oz '~ , o \  

-r,,~-~F~ t,o-O-n,,~ ~  ~ ~r~) 
oz'" or*~ oz'" az  '~ ez '"  o r ' L  

Oz* Oz ~ Oz ~ Oz ~" Oz ~' Oz 'n 

Further, collecting similar terms and rearranging some indices, we get 

_ Fx 03 z"~ c3Z'T {OI"~'~'+ F~ F;' 

Oz ~ Oz ~" Oz" Oz ~ \ Oz ~ - ~ ' - ~ ' " ]  

az'" oz '~ oz'~ / o r ; ;  r,,~,~ ~,, ~,~ 

Oz'~(Oz - - T  Oz'V x Oz'P ~ O z ' ~  
- r~ ;  _ r ~  o-U+ r ~  o-U+ r ~  o-U) (5.3) 

Rearranging indices z, and x and subtracting the obtained result f rom 
(5.3), we see that all terms involving the product  of  F and F' disappear  and 
the following expression remains: 

t'r h ) 

0 Oz* \ Oz" Oz" " ~ ~ 

Oz'O Oz '~ OZ,n 

Oz ~" Oz ~ 8z  ~ 

k Oz'" Oz,~ " *~" ,o - "  * , "  ~o ] 
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It can be rewritten in the form of the transformation 

where 

02: ''~ OZ ~ OZ"  07, '~ 

R ' L " -  oz ~' oz" oz '~ oz ''~ R~.,~ (5.4) 

- a F , ~ / a z  - a F ~ J a z  " ~ " R ~ w =  ~ ~ A ~ + F ~ , F ~ n - F ~ F ~ n  (5.5) 

Equation (5.4) asserts that R~,~ is a tensor; we call it the Riemann-Christoffel 
curvature tensor defined by using a stochastic metric. The tensor (5.5) 
constructed in this way is unique. For the proof of this, see, for example, 
Weinberg (1972). 

In the limit of a weakfield e~,v(z) or small fluctuation of the space-time 
metric, one can average (5.5) by using definition (2.24) for the affine 
connection F~,(z), where the stochastic metric G~,~(z) is given by formula 
(2.13). To carry out the averaging procedure for (5.5), we first define the 
explicit form of F~,,  that is 

= r , . . - ~  (z)~,o;,,~+~e (z)e~(z)~o;, .~+2~ o . 
1 pA 1 pA 3 - 2 e  ( z )$ , ; , .+ggo  Eog;~...+O(e ) (5.6) 

where oa F ~ ( z )  and g~(z )  are the usual gravitational attine connection and 
the metric tensor, respectively. In (5.6) we have used the following notation: 

~ , ; ; . ~ ( z ) -  o . o . o - a g , . / a z  +ag.o/Oz - a g . . / a z  

~. ; . . (z)  = o e J  az'* + oe .o /  az ~ - o e . . /  az ~ (5.7) 

E~;.~(z)=O(e~e.~) lOz + O ( e , . e ~ ) l a z  - a ( e . e . ~ ) l O z  

Assuming (Oe~(z)/Oz'. eo~)~ = 0 for the background radiation field e,.~(z) 
without a particle, we find 

r~,,(z) +~D.a (0)%;~,, (5.8) 

where 

- ~,~,p~, ~6 8,)D(0)  = 2sSaa/9(0) 

for the Euclidean procedure of taking the covariances of field e~(z) .  The 
averaging a R~,,~(z) with the combination of the metric tensor G,~(z) will 
be given in Section 5.3. 

5.2. Ricci Tensor and the Scalar Curvature 

By using the metric tensor and linear combinations of the curvature 
A tensor R~,~ one can construct other tensor quantities. Among them the 

contracted forms are most important: 
1. The Ricci tensor 

Rp~x  _ h = R~,~ (5.9) 
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2. The scalar curvature 

R = G ~ R , ~  (5.10) 

To carry out the averaging procedure for these tensors it is useful to 
A express R , ~  through the second derivative of the stochastic metric tensor 

G~ .  For this purpose we consider its covariant version R x , ~  =- G ~ R : ~ .  

Taking into account definitions (5.5) and (2.24), we get 
- -  1 o-p x 1 o-p p 

r l  c r  v 1 t r  + G,,. (F~,~F,, - F~,,F ~,) (5.11) 

Further, by using the identity G~ = 6~, one can easily ensure that 

G~, o OG~ ~' = _a,~o OG~,~/Oz ~ = _  G~:(rT~G,~ + rT~G,A 

With this formula, expression (5.11) takes the form 

r t o -  - -  -t I o" + G , = ( F , . F . ~  F . . F . , )  

where 

N~,,. .  = o 2 a ~ l o z  ~ o z " - o 2 c ,  M ~ z "  az* 

- s  ~ oz"  + o2G,~.loz ~ oz ~ (5.12) 

Most terms of the FF type mutually cancel, the result reads 

R , . ~  -- ~ N . . ~ '  + o , ~ ( r ~ r , ~ ,  ~ - r ~ , r , ~ ) "  ~ (5.13) 

As in the usual theory of gravity, from (5.13) it is easy to see the algebraic 
properties of the curvature tensor: 

1. Symmetry 

RA~,~, = R~,,~ (5.14) 

2. Antisymmetry 

R~,~ = - R , ~  = - R ~ , ~  = R , ~  (5.15) 

3. Cyclicality 

Rx~,~ + R x ~  + R ~ ,  = 0 (5.16) 

The property of symmetry (5.14) shows that the Ricci tensor 

R~,~ = G*"R~,~,,,, (5.17) 

is symmetric 

R ~  = R ~  
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and the antisymmetry property (5.15) asserts that R ~  is unique. Indeed, 
multiplying (5.15) by the quantities G x~, G A~', and G ~', we get 

R~,, = - G ~ ~'R~,~ = - G ~'R~, ,~ = G;t~R~,,~ 

G ~ R ~  = G ~ R x ~  = 0 

From the antisymmetry condition (5.15) we see that there exists only one 
possibility contracting R x ~  for obtaining scalar: 

R =- G ~ G ~ R x ~  = - G ~ G ~ R ~ x ~  

0 = G~G~"R~. , ,~  

The condition (5.16) excludes another scalar which would be formed in the 
four-dimensional space: 

G-1/2e~"~'~R~, ,  = 0 

5.3. Averaging Procedure in Space-Time with the Stochastic Metric G~,~ 

Now we are able to average the Ricci tensor R ~  and the combination 
G,~.R in space-time with a small stochastic metric G,~. First, we do this 
for R , , ( z ) .  Inserting definitions (2.13), (2.22), and (5.13) into equality (5.17) 
and carrying out some elementary calculations, we have 

R~,~ = R ~  (5.18) 

where R~ is the usual Ricci tensor defined by the metric tensor gO for an 
external gravitational field. The additional quantities M.~ and Q.~ are 
proportional to the field e~,~(z) and its squared values: 

M.~ = 1 AvT. r l  - - 1  O h p x r 2  - -  OvA 0 --~?e~ 

x~ o o~ on o~ rOnrO~ (5.19a) + ( - e  g , ~ + e , ~ g  ) ( F ~ A F , ~ - - ~ , ~  

Q ~  = 3  A8 ~ r l  1 Av~./-2 ..1..1 OAu~/3  

+ ( _ e A u  g Oo. - -  Oh~x  --'Oo" -i- en~g )'/~'lk~hux 

4 _ / 3  ,~a v 0 h~, - -  l Ohm, "e x L~e e a g n ~ - e  en.~r ~g ene~ ~) 

\ . t  uh l , u .x  - -  x x A  x l . ~ v ]  ~ 15 ,!$rlo'~ X2~h~,x 

where 

2 i 2 i 2 i 0 I ~  02Iim~ 
i 8 Ix~ 8 I~,~ - - ~ - -  i = 1 , 2 , 3  (5.20) 

N ~ = O z , ,  Oz ~" Oz" Oz ~ Oz" Oz ~" Oz ~ Oz A' 
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i 1 r  0 2 3 __ P = g ~ ,  I ~  = e ~ ,  I ~  - e.e~p 

no- _ 1 .  p n p O o -  + !  p'0pOo" 
Al~x~, -- 2e ~ , 'Yp;~x--2  e -~Tp ;~x  

1 ,oo'rO'0 4-  1 po'wO'r/ . --~8 ~vXyp ;~ - -~e  .~XO/p;~., (5.21) 

"0o" 3 PT 'r/l~Oo" 3 P3' "OF '0o" A2~.v,, = g e  e~,.,o.~'yp;vx-ge e3,~vTp;,,;~ 
4 . 1  Or/ O'o- 1 p~ p'o" 

~ 8  8 'yp ; vA ')/p'; p.x - - 4  8 E 'yp ; ~r ~/p ';/.L v 

_~ 3 p'x o'r~O'o 3 o p ' " /  o 'p0"q 

+ I ~rOP'q~OP'Cr ~~ ~ l_r ~ ~8 ~ ~p ;~A~p ' .~ -4~  s ~ p ; ~ p , ; ~  (5.22) 

where  the values  o f  Yo;~ and  ~o;~.~ are de te rmined  by  fo rmula  (5.7). 
In  order  to find the  covarianee of  the field e~(x ) ,  we use the same 

m e thod  as in Sect ion 1.2. Here  we emp loy  the divisors 

d(W_E E ~ 2 d(2)( Ex_ E E 2 
i.,.v,.tt ) -~. _. u.v,.tl ) - -  q E ~ ,  q~q,, - q ~ q ~ / q u - 6 . , ,  

and the condi t ions  (1.18a), (1.18b). Thus,  recal l ing 

f iqz - e ", e.~(z) = i-~(27r) -4 d4qe e~.~tq) 

f iqz - 02e~(z)/Oz ~ Oz ~-- i(2~r) -4 d4q q,~% e e~(q)  

and 

(&~,(q,)epo.(q2)) = i(27r)4tS(4)(ql + q2)Dx,,,oo-(ql) 

we obta in  the fol lowing covar iances :  

O ~ v , p  o. = ( e ~ v ( Z ) E p o - ( Z ) )  e = i-l(2,n-) -4 f d4q D~,oo-(q ) 

D ~ , , v ; ~  = (ep~(z)" a2e,,,(z)/Oz ~" Oz")~ (5.23) 

= i(2~r) -4 j d4q q,,q, Dp~a,,(q) 

or in the Eucl idean  metr ic  

D.~.os = (27r) -4 d4qE D.~,,Rs(qE) 

(5.24) 

I Dp~,x~;~, = _(2,n.)-4 4 E E E d qv.q,, q ,  Dp~,A,,(qE) 

Here  we dist inguish two vers ions  of  the defini t ion of  the covar iance  result ing 
f rom (5.23) and  (5.24), respectively.  It  is easy to verify that  the case (5.24) 
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leads to 

D~,,a (0)  = ~( 6~,,8~ + 6~.a6~, - �89 ) 15(0) 
1 

( 5 . 2 5 )  + a~a~oa.~  + a ~ a j ~ ) } b ~ ( o ) ,  a - ,~= 

where the functions 15(0) and 15~(0) depend on the conditions (1.18a) and 
(1.18b) and are defined by the formulas 

and 

=IG2(27r)--'~fd'*qq4jD~1)(q 2) 
b(o) [ GIt~ 

for (1.18a) 

for (1.18b) 
(5.26) 

I G 2 ( 2 ~ )  - 4  d4q q6/)11)(q2 ) for ( 1 . 1 8 a )  

/) ,(0) = c (5.27) 
G(27r) -4 J d4q q2/)12)(q2) for (1.18b) 

For the case (5.23) one obtains the same formula (5.25) in which the 
Kronecker symbol ~ should be replaced by the Minkowski metric rl~. 
For precision, we further use expression (5.25). 

Finally, taking into account relations (5.19a), (5.19b), (5.24), and (5.25) 
and after some elementary but tedious calculations, we get from (5.18): 

15 ~ 1 1 (R~,~)~ = R~ +TD(0)NA,a~ + ~(64/a +~)15 , (0 )8~  + N~,~ 
1 +~sa  - Q , ~ + L ~ + M ~ ,  a ~92 ~ . ~ . ~  - (5.28) 

where 

N ~  = ~ 1 5 ( O ) ( 2 y a ; , . a  y , , ; . x  - %;,,py~;,.~ - yp;~%,;~p 
1 l 

A.~ /~(0)( o~ o~ 

= ~ D ( 0 ) ( 2 F ~ A F ~ - . ~ A . ~  -~a*~,~J Q / z x  5 ~ Oh Ou F o h r o u  _ F o ~ r o h ]  

5 ~ O~,A Op Op 

63 

1 0 

l 0 

=2~D~(0)[31g g , ~ - 2 O g ~  - opp 2 M~,. 5 - op, o 14(g ) 6~.+406~.]  

(5.29) 
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Here the quantities ' Nx~..., ./~;~.~, /)(0), and L)~(0) are given by the first 
terms of (5.20), (5.7), (5.26), and (5.27), respectively. 

To define the contraction G~.,.R, we use definition (5.18). After some 
calculations its averaged value takes the form 

(G. , ,R)  _ o o ~ o o _RO ,(e.,,e~r ') - g ~ R  + ~ R  D~.,~o(O ) 

3 o o I~&~' + zgg.R~t3,D ~ (0) + g~162162 

_ gO(gO~O'(Q~e,)_ (e~ 'Moo, ) )  (5.30) 

Calculation procedures similar to those carried out above for obtaining 
the averaged tensor R~.., give 

g . ~ R  +~D(O)R ~.,, ~ , , R ~ o  ) (O.,,n)= o o ~ - o _ ~ / ~ ( 0 ) ( 2 R O . _ ,  o 

+ y D ( O ) g . . R o  " o o + g O . [ A + g O ~ , ( 2 N ~ a , + M ~ _ 2 Q ~  ' 

15 + ~ A ~ ,  + La~.) - 5 A ~ , ]  + f ~  (5.31 ) 

where 

5 '~ 90,B.t3 ' 1 1 1 1 ff N ~ A / 3 A ) ]  A = ~D(0)[zg N ~ A ~ , + ~ ( N ~ A X  + N ~ A -  1 1 

l l . .  - ~ / 5 ( O ) g ~  1 1 = N , , ~ ,  - ~ 8~.,,N~A~,) 

+ 3~/91 (0)[4g~176 - (gOpp)2 ~ .  _ a g o  + 4~.~ ] 

+ 5 ~ o/3/3' 1 on ~D(O)g [~6..A~r F~.. yn;r162 

+ I on on 

OvA 0 0 0 0 0 0 + g  (2F~;~,F~;~,-  F~;~.~F.;~ - F. ;~,xF.;~)]  

Other quantities in (5.31) are defined by (5.29). 

5.4. The Einstein Equation in Space-Time with Stochast ic  Metric  

First we note that it is not difficult to reconstruct the Einstein equation 
in space-time with a stochastic metric from first principles, as done in the 
usual theory of gravity. If we use the general covariance principle discussed 
in Section 3.1, then the corresponding generalization of the Einstein equation 
may be made by redefining the Ricci tensor R ~ . .  --> R~,., scalar curvature 

o T.~, which enter into the R ~  R, and the energy-momentum tensor T.~--> 
usual Einstein equation. In previous sections we defined the Ricci tensor 
and the scalar curvature R by means of the stochastic metric tensor and 
averaged their quantities in the limit of weak field e~..(z). 
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Now the question of  how to redefine the energy-momentum tensor in 
space-time with a stochastic metric arises. We assume that its covariant 
structure is conserved under the transformation x ~ ~ z ~ of the coordinates. 
Thus, 

T,~(z)  = Ox~ Ox~ Ox~ Oxt3 0~" O~ ~ T f  ~ (5.32) 
az-'-; az--'-; T~Z - O z  ~ az ~ ax ~ ax e 

where TY~ is the energy-momentum tensor in the local-inertial system of  
reference ~ .  The energy-momentum tensor in the quasilocal-inertial system 
of  reference x"  with the stochastic metric (1.11) is defined as 

0~r O~P T y (5.33) 
T~t3 - Ox ~ Ox ~ ~,o 

According to the Jacobian of transformation (1.10), its averaged value is 

( T~)s  = TY~[1 +~ /9 (0 ) ]  +~6/9(0) T ~ 6 ~  (5.34) 

and therefore, in the presence of an external gravitational field, the energy- 
momentum averaged tensor takes the form 

(Tov(z))s = T~ f ~ dx~ Oxp (5.35) 
; t xVc ,  p a Z  ~ O Z  ~ 

where T~ is the usual energy-momentum tensor in the presence of  gravity 
without the stochastic metric, and the connection between coordinates x ~ 
and z ~ is defined by the standard form as in the usual theory of  gravity 
with the metric o g / ~  �9 

We assume that in the case of  a weak static gravitational field generated 
by a nonrelativistic body with mass density p, the 00th component  of  
the stochastic metric tensor is approximately equal to (for example, see 
Section 2.4) 

Goo-  - (1  + 2~bf) 

Here ey is the modified Newtonian potential defined by the Poisson equation 

V2 d~f = 4~rGp 

The energy density Too for a substance moving with a nonrelativistic velocity 
is proportional to its mass density 

Too ~ p 

Collecting these two relations, we get 

V2Ooo = -8"n'GToo (5.36) 
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However, relation (5.36) allows us to assume that the equation for weak 
fields with energy-momentum distribution t~  has the standard form: 

h~t3 = - 8 ~ G t ~  

where ) t~ is formed from a linear combination of  the metric tensor and its 
first and second derivatives. Then from the general equivalence principle 
it follows that the equation which defines a gravitational field with an 
arbitrary stress in the presence of the stochastic metric must be of the form 

Ag,, = -8~GT, , ,  (5.37) 

where A,~ is a tensor leading to h~t3 in the case of weak fields. 
By using the standard method as in the usual theory of gravity, in our 

case this tensor is given by 

A.~ = Ru~ - ]G.~R (5.38) 

Inserting this into equation (5.37), we get the Einstein equation in space-time 
with the stochastic metric G~,~, 

R~,~ - � 8 9  = -8r  (5.39) 

The averaging procedure for this equation may be followed using 
expressions (5.28), (5.31), and (5.35). 

5.5. The Bianchi Indentity and the Coordinate Conditions 

It turns out that in the gravitational theory with the stochastic metric 
G ~  the Bianchi identity and the coordinate conditions are fulfilled. The 
former can be obtained by introducing the quasilocal inertial system of 
coordinates at the considered point at which F ~  is approximately equal to 
zero up to the order of (12p1/12). At the given point, expression (5.13) gives 

R~.~; .  = �89 (5.40) 

where N.a~. is given by (5.12). By cyclic rearrangment of the indices ~,, x, 
and ~7 one can obtain the Bianehi identity 

Rxu~:n + R~.~;~ + RA~.; ~ = 0 (5.41) 

These identities are explicitly covariant, so that they are valid in any system 
of reference, including quasilocal inertial ones. 

The contracted form of  (5.41) is sometimes very useful. According to 
the fact that covariant derivatives of G ~" disappear, and contracting A and 
v, we find 

R . . ; .  - R~,.,. + R~..;~ = 0 (5.42) 
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Contracting this relation again, one gets 
- -  bL - -  V R~, R,;~ R , .~=0  

o r  

(R,  ~ 6 , R ) ; , - 0  (5.43) 

An equivalent but more well-known formula has the form 

( R  ~ - �89 G ~ R ) ; ~  = 0 (5.44) 

as in the usual theory of gravity. 
To explain the coordinate  condit ions in our scheme with the stochastic 

metric, we first note that the symmetric tensor A,~ in (5.38) has ten indepen- 
dent components, and therefore, Einstein's field equations (5.39) consist of 
ten algebraic independent equations. However, from the Bianchi identity 
(5.44) it follows that there are not ten functional independent equations, 
but only 1 0 - 4 = 6  equations. These equations remain four independent 
degrees of freedom in ten independent components of the stochastic metric 
tensor G,~. These degrees of freedom correspond to the fact that if G~  is 
a solution of Einstein's equation, then another solution is G ~  which is 
obtained from G~  by means of an arbitrary transformation of coordinates 
z ~ z ' L  This transformation of coordinates gives rise to four arbitrary 
functions z '~ ( z )  corresponding to just four degrees of freedom in the 
solutions of equation (5.39). Further, by choosing a concrete system of 
reference, one can eliminate ambiguity in the metric tensor. The choice of 
the system can be expressed in the form of four coordinate condition, which, 
by supplementing six independent Einstein equations, lead to a synonymous 
solution. It is more convenient to use the condit ion o f  harmonic i t y  o f  

coordinates 

r ~ --- c , " ~ r  ~ = o (5.45) 

To show that choice of the coordinate system in accordance with these 
conditions is always possible, recall the transformation equations for the 
affine connection 

Z ~ 0 2 z ' A  F'~,, Oz'~ Oz'~ Oz~ P OzP Oz'~ 

Oz ~ Oz'U cgz '~ F , ~ -  Oz,~ Oz'U Oz ~ Oz ~ 

[see equation (3.15)]. Contracting this equation with G '"~, one finds that 

F 'A = (Oz'A/OzP)F ~ - G o`, 02z'~/Oz p Oz ~ (5.46) 

Therefore, if F p disappears, we can always introduce a new system of 
coordinates by solving the following second-order partial differential 
equations: 

G o'~ O2z,~/Oz p Oz ~r = ( O Z ' h / o z P ) F  p 
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Then equation (5.46) leads to F 'x = 0 in the system of coordinates z '~. Of 
course, the four conditions (5.46) are not in general covariant, but their 
necessity is dictated by the elimination of ambiguity which appears in the 
metric tensor due to the covariance form of  Einstein's equation. 

Although we cannot write these conditions in the form of covariant 
equations, we can make them more elegant by expressing the affine connec- 
tions through the metric tensor: 

Recall that 

F ~ = �89 G"~GX'y, ;~,  

G** aG. ,Jaz"  = - Q , ~  oO~'~/az ~ 

�89 ~" aG,~./az* = O -1/2 oOl /=/az * 

[see the fon,aulas (3.39) and (3.41)]. From this it follows that 

F x = - G  -'/2 O(G'/=G**)/Oz * (5.47) 

and the conditions leading to harmonic coordinates take the form 

O(G'/2Ga*)/Oz ~ = 0 (5.48) 

If  there exists only the fictitious background radiation field e ~ ( x ) ,  then 
relation (5.48) becomes the exact equality 

O[(g(s))l/2g~]/Ox t~ = 0 (5.49) 

Now we explain the term "harmonic coordinates." It signifies that the 
function F ( z )  is harmonic if it satisfies the following equation: 

[3F(z )  = 0  

where [] is D'A lember t ' s  invariant operator, given by 

G F  = (GP*F;p);, (5.50) 

Making use of  (3.36), (3.42), and (3.40), we get 

� 9  G ~ 02F/Oz A Oz* - F  ~ OF/Oz ~ (5.51) 

I fF  x = 0, then the coordinates are harmonic functions (5.50), thus warranting 
the name "harmonic"  for such a system of coordinates. 

In the absence of  both external gravitational and additional background 
fields, the explicitly harmonic system of coordinates comprises the Mink- 
owski coordinates in which G ~ = ~/a~" and G = 1, so that the relation (5.48) 
is fulfilled identically. 
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6. CONSTRUCTION OF THE THEORY WITH QUANTUM 
FLUCTUATION OF THE SPACE-TIME METRIC 

In this section, instead of additional background radiation stochastic 
fields e,~(x) considered above, we deal with some quantizedfield ~,~(x) 

~ ( x )  = ~ ]- &ok[a(k, p)e,~(k, p) e ikx + a+(k, p)e*,(k, p) e -ikx] 
P 

dOJk = (2~)-3/2(2k~ -'/2 d3k, k ~ ]k[ (6.1) 

where e.~(k, p) is the polarization tensor of the graviton with the momentum 
fik and the helicity p. Creation a+(k, p) and annihilation a(k, p) boson 
operators satisfy the following commutation rules: 

[a(k, p), a+(k ', p')] = c$0/~$(3)(k - k ') (6.2) 

[a(k, p), a(k', p')]_ = [a+(k, p), a+(k ', p')]_ = 0 (6.3) 

Here our purpose is not to quantize the gravity with the field (6.1), but we 
use it as a method of introducing quantum fluctuation in the space-time metric 
and consider its consequences in accordance with previous sections. 

Notice that with the Hamiltonian constructed by means of (6.1) the 
quantization of gravity encounters some difficulties caused by the fact that 
the operator (6.1) cannot be the Lorentz tensor, since the summation over 
helicities is restricted by physical values of p = +2, while, as will be shown 
below, a true tensor would have helicities 0, • • From the very beginning 
we can start from a true tensor, and then subject e~  to a gradient transforma- 
tion in order to forbid unphysical values of helicities 0 and • However, 
by selecting a gauge in such a way, then ~ ( x )  is already not a tensor. If, 
instead, we assume that e13, e23, elo, e2o, eoo, eol, and e33 disappear when 
k is directed along the third axis, then the gauge condition is not the Lorentz 
invariant. Indeed, if we make these components equal to zero, then under 
the Lorentz transformation A~ the quantity ~ ( x )  does not simply pass to 

p e r a  A~A~ ep~(x), but undergoes an additional gradient transformation 
p 0 - ^  ~(x) -~  A~A~e.~(x)+ahJax +ah~/ax ~ 

where h,(x)  are arbitrary small functions (see below). 
Thus, the construction of the Hamiltonian from the field ~ ( x )  and 

the derivation of the Lorentz invariant probability transitions represents a 
more difficult problem [for details, see, e.g., Arnowitt and Deser (1959), 
Arnowitt et al. (1959, 1960, 1061), Dirac (1959), Feynman (1963), Faddeev 
and Popov (1967), Mandelstam (1968), and DeWitt (1967, 1968)]. Recent 
achievements in quantum gravity based on new ideas and approaches are 
extensively given in the proceedings of the second Oxford symposium edited 
by Isham et al. (1981) and of the 11th international conference on general 
relativity and gravitation edited by MacCallum (1987). 
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6.1. Weak-Field Approximation 

Now we show that the additional term in the space-time metric given 
by formula (1.11) or (2.13) defines indeed a wavelike solution to the Einstein 
equation (5.39) for the c-number field e ~ ( x ) .  To study this problem, we 
shall turn to the weak-field limit, omitting the square term in the field e ~ ( x )  
in (1.11) or (2.13). Thus, we assume that the metric G ~  becomes the 
Minkowski one, 

G~. = ~ + e ~  (6.4) 

where le.~(x)[<< 1, and therefore we have omitted the term of the type 
e~(x)  e~p(x); e . . ( x )  is a c-number field. Further, we follow Weinberg (1972). 
Thus, in the first order of  e . . ( x ) ,  the Ricci tensor has the form 

R.~ ~- OF ~./OxA ~ - OF~.~/OxX a + O(e2) (6.5) 

and the af-fine connection is 

V~v = �89 (6.6) 

where the expression ~;,~,(x) is given by (5.7). When we restrict ourselves 
to the first order of e~ ,  then the lowering and the raising of all indices 
should be carried out by means of  ~'~ ~7 , but not G ~'v, i.e., 

@~ =- e~(x),  @;  O/Ox; =- O/Ox ~, and so on 

In this approach equations (6.5) and (6.6) give the Ricci tensor in the first 
order: 

Oe~ a s .  . aeA  R ( I )  1 2 a 2 a 2 a 

R. .=__~ .~= ~  ~ e . .  OxA Ox. Ox~ Ox t-OxU Ox~) (6.7) 

Therefore, the Einstein field equation is written as 

2 h 2 A 2 A 
0 C A  O e~ 0 e~ §  16r 

V]e.~ Ox ~ Ox ~ Ox x ox ~ Ox ~" Ox ~ 
(6.8) 

S . ~ =  7: 1 . . .  

Here T . .  is chosen in the lowest order in e.~, and does not depend on e . . ,  
satisfying the usual conservation law 

0 r X / o x  ~" = 0 (6.9) 

Notice that the conservation law (6.9) written in such a form ensures the 
coordination of equations (6.8), since (6.9) assumes the correctness of 

os"~/ox ~ =�89 
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whereas the linearized Ricci  tensor satisfies the Bianch i  ident i ty  in the 
following form: 

OR~)~/Ox~ 1~ A = ) - O [ E ] E A - - 0 2 E A ~ 3 / o x A  OXCS]/OX u .~-IoR(1)A/oxV 

As discussed in Section 5.5, a field equation such as (6.8) is not expected 
to lead to a unique solution, since, given any solution, one can always 
change coordinates to obtain other solutions. A more general t ransformation 
of coordinates, keeping the field to be weak, has the form 

x ~ ~ x ' "  = x"  + h'~(x) (6.10) 

where o h ~ / o x  ~ is of  the same order as the e,~ field. In the new system of  
coordinates the metric is written as 

OX '~ OX" 
G , ~  _ _ _  GAo 

OX x OX p 

or, since G ~ ~ ~7 ~" - e "~, one can write 

e'~ ~ = e ~,~ _ @ "  o h ~ / o x  ~ - ~p~ Oh~/Ox p 

Thus, if  e,~ is a solution of  equation (6.8), then so should 

v /x 
' = e ~ - O h J O x  - o h ~ / o x  (6.11) E/~v  

where h,  --- h %7,~ are four small quantities and, generally speaking, arbitrary 
functions of  x ~. Substituting (6.11) into (6.8), it is easy to verify immediately 
that (6.11) is also its solution. This property is a consequence of the so-called 
gauge  invariance of the field equation. 

The gauge invariance of the field equation (6.8) gives rise to difficulties 
when we want to solve it exactly. However, these difficulties can be removed 
by choosing particular gauge, i.e., some system of coordinates. It is more 
convenient to work in the harmonic  sys t em o f  reference for which 

~ p  A G F ~ , = 0  

By using (6.6), then in the first order one gets 

p, v 
Oe~/Ox"  = l O e , / O x  (6.12) 

Such a choice is always possible, and follows from the general arguments 
expounded in Section 5.5. From the expression (6.11) it is also seen that if 
e ~  does not satisfy the condition (6.11), then by carrying out some transfor- 
mation of  the coordinates (6.10) provided 

[Zh~ = Oe~/Ox"  - � 8 9  ~ 

we find some tensor e ~  which has already satisfied the condition (6.12). 
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Therefore, it will be assumed that e~, is indeed the solution of  equation 
(6.12). Inserting (6.12) into (6.8), we can write the field equation in the form 

[:]e~, = - 4  7rGS~ (6.13) 

One of the solutions represents the retarded potential 

e,~(x, t ) = a f t  f d3x ' Ix -xq- l s ,~ (x  ', t-lx-x'l) (6.14) 

As mentioned above, the conservation law (6.9) for T "~ is equivalent to 

dS~ / ax ~ = �89 ax ~ (6.15) 

and in consequence of this, the solution (6.14) for the source S,~ located 
in a finite volume automatically satisfies the harmonic coordinate condition 
(6.12). To the solution (6.14) can be added any solution of the homogeneous 
equation 

Vle~, = 0 (6.16) 

Oe~ / ax ~ = �89 ~ (6.17) 

We understand the expression (6.14) as the gravitational radiation generated 
by the source S, , ,  whereas any additional term satisfying (6.16) and (6.17) 
represents gravitational radiation coming from infinity. The appearance of 
the time variable t -  Ix-  x'[ in (6.14) shows that gravitational effects propa- 
gate with the single velocity (c = 1), i.e., with the velocity of the light. 

6.2. Plane Wave Solutions 

Let us consider the plane wave solutions of the homogeneous equations 
(6.16) and (6.17), since they play an important role in understanding the 
physical nature of the gravitational radiation field and, moreover, as shown 
below, retarded waves become plane ones at r ~ oo. A general solution to 
equations (6.16) and (6.17) is a linear superposition of solutions, written 
in the form 

e ~ ( x )  = e~  e i~ + e*, e - i~ (6.18) 

Such a solution satisfies equation (6.16) if 

k~k ~ = 0 (6.19) 

and the condition (6.17) if the relation 

- !  k k.  e~ - 2 ~ e .  (6.20) 

holds. It is obvious that the matrix e.~ is symmetric: 

e , ,  = e~ (6.21) 

We will call it the polarization tensor. 
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In the general case, a symmetric matrix (4x 4) has ten independent 
components. However, the four relations (6.20) reduce their number to six 
and of these six components only two have the meaning of degree of physical 
freedom. By carrying out the transformation of coordinates x ~' ~ x ~" + h ~'(x), 
we change the metric rh,~+e~,~ to the new metric ~ , ~ + e ~ ,  where e~,~' is 
given by the expression (6.11). Assume that we choose h ~ ( x )  in the form 

h~'(x) = ih ~" e ik~ - ih *~ e -ik~ (6.22) 

Then (6.11) leads to the expression 

e ' ~ ( x )  -- e,~' e ~k~ + e~,~'* e -ik~ (6.23) 

where 

e ' ~  = e,,~ + k~h,, + k,,h~ (6.24) 

Notice that waves nevertheless satisfy the harmonic coordinate condition 
(6.20). It may be concluded that for four arbitrary parameters h , ,  the 
polarization tensors e~,~ and e , .  correspond to the same physical picture. 
Namely, from six independent components satisfying (6.20) and (6.21) only 
6 -  4 = 2 have physical meaning. For example, consider a wave with wave 
vector 

k l = k 2 = O ,  k 3 = k ~  (6.25) 

propagating along the z axis in the direction of increasing values of z. In 
this case, the relation (6.20) reduces to the conditions 

e31 + Co1 = e 3 2 +  e02 = 0 

e33 + e03 = --  Co3 -- eoo = �89 e l  1 + e22 + e33 --  eoo) 

These four relations allow us to express e~o and e22 through the other six 
components e~,~, 

em = - - e 3 1 ,  eo2 = - - e 3 2 ,  Co3 = -- �89 + eoo), e22 = - - e l l  ( 6 . 2 6 )  

Then in the system of coordinates transformed by the formulas (6.10) and 
(6.22), these six independent components e~,~ are changed in accordance 
with equations (6.24) by the components e~,~.' �9 

e~l = e l l  e~2 = e l2  

e~a = ea3 + khl  ef23= e23 + kh2 

' = e33 + 2kh t  e~oo = e o o -  2kho e33 

Only the components ell and e22 have a true physical meaning. Indeed, 
one can always find a transformation of coordinates with 

hi = - e l3 /  k, h2 = -e23/ k, h3 = -e33/ 2k, ho = eoo/ 2 k  
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t ! which renders all components of e,, '  zero with the exception of  eu ,  e12, 
and e~2 = -e~l .  

The difference between the separate components of the polarization 
tensor becomes clear if we understand them by the changing of  e~,~ (x) upon 
rotation of  the system of  coordinates around the z axis, i.e., under the 
following Lorentz  transformation: 

All  = c o s  0 

A~ = - s i n  0 

A3 3 = Ao ~ = 1 

A~ = sin 0 

A~ = cos 0 

all other A~ = 0 

(6.27) 

v Since such a transformation assumes the vector k~, to be invariant (A,k~ = 
k~,), then only the polarization tensor is subjected to the transformation 

r p o" e ~  = A~A ~ ep~ (6.28) 

Making use of relation (6.26), we find 

e'~ = exp(+2iO)e•  f "  = exp(+2iO) f •  e~3 = e33 , 
! 

eoo = eoo 

(6.29) 

where 

e~ - eu  :v ie12 = -e22 q: ie~e 
(6.30) 

f •  =- e31 q: ie32 = - e 0 1  • ie02 

Let us say that any plane wave ~O transforming by the rule 

q / =  e'h~ (6.31) 

under rotation of  the angle 0 with respect to the direction of the spreading 
of the wave has helicity h. So, it is seen that the gravitational plane wave 
can be decomposed into the following components: e• possessing helicity 
~:2; fi: with helicity J:l; and also eoo and e33 with zero helicity. However, 
it is easily proved that the components with helicities 0 and • become 
zero by the appropriate choice of the system of coordinates, and therefore, 
only the components with helicity +2 have physical meaning. 

It is useful to compare the above formalism with electrodynamics. The 
Maxwe l l  equations in the Lorentz  gauge have the form 

O"A~ = 0, [~A~ = - J~  (6.32) 

In empty space these equations acquire the analogous form of  (6.16) 
and (6.17): 

[2A,~ = O, oA~'/Ox ~ = 0 
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for the metric written in harmonic coordinates. Here we deal with the inertial 
system of coordinates, and therefore, 

[ ]  = ~ o~  O2/OXc~ OX fl 

The solution of the given equations, as for equations (6.18)-(6.20), can be 
written in the form of the plane wave 

i l o c -  rg e - i k x  A s  = ea e t e~ 

where 

k ~ k ~ = O ,  k ~ e ~ = O  

Generally speaking, e ~ would have four independent components, but 
the condition ks e ~ = 0 reduces the number of independent components to 
three, while the condition (6.20) increases the number of  independent 
components e~,~ to six. Further, with the Lorentz gauge and the unchanging 
physical fields E and B, analogously with (6.11) and (6.22), one can change 
A,  by using the g a u g e  t r a n s f o r m a t i o n  

A , ~ A ' ~ - - A ~ + o f / O x , ~ ,  f ( x ) = i e e i k ~ - - i e *  e -ikx 

By analogy with (6.23) and (6.24) a new potential can also be written in 
the form 

i _ r e ikX  d;- e ~  :~ e - i k x ,  t A ~ - e ~  e ~ = e ~ - 6 ,  k~ 

The parameter 8 is arbitrary, so that, of  the three algebraically independent 
components e~, only two have physical meaning, just as the general covari- 
ance leaves physical meaning for only two of the six independent com- 
ponents. In order to isolate these two components e~, consider a wave 
propagating along the z axis with the vector k ~ given by the relations (6.25). 
Then from the condition k~ e ~ = 0  there follows the equality eo = -e3 ,  
whereas the condition (6.20) allows us to express e22 and eo~ through another 
six components e~,~. Further, the considered gauge transformation leaves 
e~ and e2 invariant, but changes e 3 by 

e~ = e 3 - ~$. k 

Therefore, choosing 6 = e3 /k ,  one can render e~ zero and as a result only 
e~ and e2 possess physical meaning, while e~l and e22 alone do not become 
zero by any transformation of coordinates. Finally, the physical meaning 
of  the given two components can be found by subjecting the electromagnetic 
plane wave to rotation (6.27). The polarization vector is changed by 

e'~ = a ~ e  e 

and therefore, 

' - e x p ( + i O ) e •  ' - e• - e3  - e3 
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where 

e~_ ..= e I =Y ie2  

Thus, electromagnetic waves are decomposed into components with helicity 
+1 and 0. However, physical meaning belongs only to components with 
helicity + 1, but not 0, just as gravitational waves may have helicity +2, but 
not 4-1 or 0. All these considerations are valid when we use classical language 
and say that electromagnetic and gravitational perturbations are carried out 
over waves with spin 1 and 2, respectively. 

6.3. Quantization of the Metric Tensor 

We see that with the quantum field (6.1) the metric tensor (1.11) in the 
absence of an external gravitational field now takes the quantized form 

g.~(x) = 7q~ + e.~(x) +~ e . ( x ) e~ (x )  (6.33) 

Theorem 6.1. Let g~(x)  be the quantized field (6.1) satisfying the 
commutation relation 

[~,~(x), eo~(Y)] = iD~,p , . (x -y)  (6.34) 

where D.~,o~(x) is a Pauli-Jordan-like function of the graviton field. Then 
the commutation rule 

(0[[~.~(x), ffo=(y)]-]0) = iD.~,o~(x - y )  + I.~,o=(x - y) (6.35) 

holds for the operator-valued metric tensor ff.~(x), where the symbol 10) 
denotes the vacuum state: 

a[0) = 0, (0]a + = 0, (0[0) = 1 (6.36) 

and 

I~,p,~(x - y )  

=o?p2f ! ,  d~ d~176 (27r)-3(k~176 

X { e i ( k ' + k 2 ) ( x - Y ) [ e ~ ( k l ,  p l ) e ~ ( k 2 ,  p2)eo*~(k2,  p 2 ) e * ~ ( k a ,  P l )  

+ e~(ki, pl)e~,~(k2, p2)e*~(kl, pa)e*~(k2, P2)]- h.c.} (6.37) 

Proof. Direct calculation shows that owing to the commutator (6.2) in 
the expression 

[g.~(x), gp~(y)]_ = [~.~(x), A , A8 ^ ^ ep~(y)]_+z[e~(x)e~8(x), eo~(y)]_ 
1 ~ ^ x  ^ +~[ej.~(x), e . ( y ) e~ (y )  ]_ 
1 ~"~ ^ ^x A +rg[e.(x)e~8(x), ep(y)e,~,,(y)]_ 
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terms of the type a +, a, and a+a appear, and, after taking the expectation 
value over the vacuum state (6.36), it acquires the form (6.35), i.e., the 
commutator (6.35) is a c-number and depends on a function of the difference 
x - y of coordinates. 

Due to the explicit form of (6.33), the metric tensor in the case of a 
quantum fluctuation of the space-time metric possesses the ant i symmetr ic  

property 

g . , . ( x )  " _ l . . . .  1 A _ g . . ( x )  - ~[e.(x),  e~(x) ]  = ~D. ,~(O) 

Further, we use only the symmetric metric tensor defined by means of 
the T-product o f  operators ~,,~(x): 

~ A x )  =- ~ ( x )  = A , ~ r / . . + e o ~ , ( x ) + ~ T ( e . ( x ) e ~ , ~ ( x ) )  (6.38) 

and therefore. 

( O l g ~ ( x ) ] O )  - -  1 ca r/r. + ~D~,~(0) (6.39) 

where, by definition, 

c I - ipx 2 D.~,p,7(x) = i - 1 ( 2 r  - 4  d 4 p e  II~,..p~(p)(p - i e )  -~ (6.40) 

is the Green func t ion  of the graviton field. Here the project ing tensor II,~,o~(p) 
for the spin-two field possesses the properties (1.16). Moreover, one can 
easily verify that 

(OiT[~.~(x)~o~(y)] lO)= , c~ rlosrl, . + ~ % ~ D  . , ~  (0) 

+ D~.,,,o~(x 1 ~,, 

1 C~ Cx Cy~X C +ig[D..~(O)Do,~ (0) + D~,,p (x  - y )D,v ,~ , , ( x  - y )  

cT c,~ + V~, ,~,(x  - y ) V , v , o ( x  - y)] (6.41) 

In accordance with the definition (1.12), the inverse metric tensor (1.13a) 
with respect to the tensor (6.33) in the given case reads 

{;o } 1 ^ ~  B 1 A/3 ~,~"~(x) = ~7"t~6~6~T dfl exp[-/3(8~ + ~ e o ( x ) ) ( 6 ~  +~e~(x))] 

or in the weak  quant i zed  f ie ld  limit 

f f v C r ( X  ) = "/~ . . . . .  3 ~ u p  ^o" - e  ( x ) + z T { e  (x)ep(x)} (6.42) 

Thus, introduction of a quantum fluctuation in the metric allows us to 
quantize the metric tensor and establish the geometric properties of space- 
time with a graviton field. [] 
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6.4. Dyadic Representation 

In our scheme, the basic tensor D~,p~(x) is formed by means of 
projected matrices H~,~.p~(k) for which the dyadic representation 

Yl~'~ = ~ e~(p, p) e~ p) (6.43) 
P 

holds, where five symmetric tensors e"~(p, p) satisfy the conditions 

p.e""(p,p)=O, ~?.ve~(p,p)=O, e*"~(p,p)e.~(p,p')=6f,p, 
(6.44) 

If  one can use helicitic states 

+ 1  

d"~(p) = Y~ e"(p, p) e*~(p, p), e*~(p, p) = ( -1 )  p e~(p, -p) (6.45) 
p=- - I  

in dyads constructed from vectors, then we obtain 

II"~'P'~(P) = 2 e"~(P, P, P') e~ P, P') (6.46) 
p,p' 

where the tensors entering into the right-hand side of this expression are 
written through helicitic states with p = +1 as follows: 

e"~(p,p,p')=-~ e (P,P) e~(p,P')+e"(p,P ') e~(P,P) 

-6-oo' ~, e~(P, Pl) e~(P, -P~) I (6.47) 
121 _1 

Appearing in the last formula are three independent tensors having the form 

e~'~(p, +1, - 1 )  = 0 

and 

e~(p, +2) = e~(p, +1, • = e~(p, • e~(p, • 

and therefore, they describe two helicitic states of the graviton. 
It is useful to notice that the metric tensor ~/.~ can also be formed by 

the dyadic representation for the photon field. Since the vector p"  is 
isotropic, p2= 0. Let us introduce the vector/~" obtained from the vector 
p"  by conversion of the direction of the photon motion: 

fro = pO, fii = __pi, p 2  = 0 

Then p"  + / ~  will be a timelike vector, but p~ - /~"  a spacelike vector. One 
can add to them two orthodiagonal unitary spacelike vectors e~(p, p): 

e"*(p,p)e.(p,p')=6op,, p.e"(p,p)=O, fi~.e~'(p,p)=O 
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and obta in  the fol lowing dyadic representation: 

rff.~ = (2p /~ ) - , (p .  + / ~ . ) ( p  v + / ~ )  _ (2p /~ ) - l (p .  _ / 5 . ) ( p  ~ _/5~) 

+~ e"(p, p) e~*(p, p) 
p 

= (Pf)-I[P"f~+P~"]+Z e"(p, p) e~*(p, p) (6.48) 
o 

Necessi ty  in the choice of  complex  vectors  appea r s  when  we want  
to s tudy the angular  m o m e n t u m  of  a particle.  Unde r  the infinitesimal 
homogeneous Lorentz transformation 

,u.v 
X TM = X ~ q- 609 X,, 

the current vector J~(x) is changed  accord ing  to the law 

o r  

J '~ (x ' )  = J r ( x )  + 6o) "~ L ( x )  

6J~(x)  = &o '~ x,~ o J ~ ( x )  + 6o~ ~ L ( x )  

f rom which one can obta in  

6 J ( x )  = {6t~. [x x V]}J(x)  - 660 x J ( x )  

6J~ = 6,,,- Ix x v ] J ~  

for  the th ree-d imens iona l  rotat ion,  or in the equivalent  form,  

6a (p )  = { 6 ~ . [ p x a / o N } a ( p ) -  a ~  x d ( p )  

6J~ = 6co. [p x O/Op]J~ 

Let us now consider  ro ta t ion  a long the axis directed to the m o m e n t u m  of  
the part icle,  when 

a~ = a~ p/lpl 

A single-part icle state with the helicity p for  which 

6J(p, p) = ip 6~ J(p, p) 

is given if and  only if 

-e*( p, p) • P/IPl = ipe*( p, p) 

The vector  e which is paral lel  to p cor responds  to zero helicity, and  therefore  
we in t roduce a new nota t ion,  

e(p, O) = (p~ [, e~ O) = ]p[/m 
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for the vector e~(p, 3). Helicitic states with p = + 1 correspond to the complex 
combinations 

1 
e*(p, +1) = ~ [-e(p,  1) + ie(p, 2)] 

(6.49) 
1 

e(p, -1)  = ~  [e(p, 1)+ ie(p, 2)] 

which are chosen in such a way that the relation 

+1 
- e* (p ,p )x~ to=i  • (Sto.S)pp, e*(p,p') 

p ' = - - p  

leads to the standard matrix elements of the operator of the unitary spin. 
The dyadic representation is useful for expressing geometric relations 

of the type of (6.35) and (6.41) by means of the projecting tensor II,~,p~(k) 
or in the next step by the Green functions D~,,~(x) and D~v,,~(x). For 
example, the function (6.35) now takes the form 

l"~'~ = I I dwk~ dr~ (2~')-3(2k~176 

I ~ i ( k l + k 2 ) ( x - Y ) F l - g a ,  [11 ~'VI x [1.,- "~ 
X ~r.. Lit x p.,~ \ ~l}.U. v a , p k ~ , 2 j  

Ii ~,o(k,)II ~ ,~ (k2) ] - h.c.} 

6.5. Green Functions of the Field ~,~(x) 

The dyadic representation is convenient for direct calculation of the 
Green functions of the graviton field ~ ( x ) .  First, let us consider the 
commutator 

iD~,p~(x - y )  = [~,~(x), ~o~(Y)]- (6.50) 

Substituting the representation (6.1) into (6.50) and using (6.2) and (6.3), 
we obtain 

ff 3k D~,or -3 d~@oII~.or ] (6.51) 
2k 

where the projecting tensor II.~,pr 

rI...r = d,.o(k)d.r ) + d.r -2d..(k)dor 
d.~( k ) = ~q.~ - k.k~/ k 2 (6.52) 

is given by the dyadic representation 

II.~,o~(k) =~ e.~(k, p)e*,~(k, p) 
P 
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To present the tensor (6.52) by means of the differential operator in x space, 
we introduce the operator-valued divisor 

d ~ ( ~ ,  o~) = ( - n ~ � 9  + oV ox~ox ") 

[]  = 77 ~ 02/ON ~ OX ~, 

and use the identity 

d.~ e 'k(~-y) = d'~,(k) e ik(x-y), 

2 0 x = 02 /OX l" OX ~ 

d'~,( k ) = k2 rl,~ - k.k~ 

(6,53) 

where 

f d3k e_ik(x_y)] Do(X-y) = i-1(27r) -3 - ~ [  e ik(x-y~- 

= i-1(2~) -3 f d'ke(k~ 2) e ik(x-y) (6.56) 

is the Pauli-Jordan cornmutatorfunction of a scalar particle with mass m = 0. 
Calculation of the explicit form of the different two-point Green functions 
for particles with spin 0, 1, and 1/2 is carried out in textbooks of field 
theory (see, for example, Bogolubov and Shirkov, 1980). We use here their 
results. Thus, we have 

1 Do(x) = ~--~ e(x~ A = -X2o+X 2 (6.57) 

The well-known discontinuous function e(x ~ entering into expressions 
(6.56) and (6,57) is given by 

e(xO)=O(xO)_O(_xO)={ 11 f ~ 1 7 6  
- for x ~ < 0 

where O(x ~ is the Heaviside function. 

It is easy to verify that the formal differential operator 

fo o f l ~ , p ~ ( [ ] ,  : - ~  ' Oxy) = da e II~,,p~([~, Oxy) (6.54) 

gives the projecting tensor (6.52) in the momentum space. Here 
H~,,p~(D, O2y) is formed through the operator (6.53) in accordance with the 
formula (6.52), where (6.53) should be put instead of d,,(k). Notice that 
the operator (6.54) has physical meaning only in the momentum space. 
Thus, the function (6.51) can be rewritten in the form 

O,,,p,~(x - y )  = II~,p~(I-q, 02y)Oo(x -y )  (6.55) 
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Now let us introduce functions (~ D.~,.~(x) according to 

D (-) "x " -  (+) ~,,.o,~( - Y ) - D.,,f,o-(y - x) - i(Ol~.(x)~p,~(y)lO ) 

Thus, we have 

D (-) r d~keik(x-r) E e.~(k, p)e*,~(k, p) ,~,A~t -Y) = i ( 2 7 r )  - 3  2k o o 

A 
O~y)Do ( x - y )  (6.58) 

where 

D(o-)(x - y )  = i(27r) -3 J d4k O(k~ 2) e i k ( x - y )  

is the positive frequency part of  the Pauli-Jordan function of the massless 
scalar particle. 

The causal Green function of the graviton is defined as follows: 

D~.o~(x - y )  = (OI T[ Y~(x)Fp~(y) ]lO) 

= i-1(2"n') -4 f d4p e-iP(x-Y)II~,p~(p)(p2- ie) -1 (6.59) 

A 
o xy). or. by means of the differential operator II,~.o~([] , 2 

D.~,o,.( x y) = i~l.~,p~(D, z c - Oxy)Do(x-y )  (6.60) 

It is natural that D ~ ( x - y )  is the causal Green function of the massless 
scalar particle given by the standard form 

D ~ ( x - y )  = i-1(2~-)-4 I d4k e-~k(x-Y)(k2-- ie)-I (6.61) 

The retarded and advanced Green functions can be defined in the 
following way: 

o ' , % ~ ( x )  = O ( x ~  - ~ ~+~ . - D , ~ . , = ( x )  + D , ~ . o ~ ( x  ) 
(6.62) 

D(-) , . u,~.p=tx)""av . . = _O(_xO)D,~o~(x). = D,~.o~(x)-  ,~.,~tx) 

They satisfy the conditions 

ret D~.p,~(x) = 0 

adv D.~.o~(x) = 0 

I x  2 < 0 
for / X 2 > 0 ,  X 0 < 0  

for { x 2 < 0  
X 2> O, x ~  0 
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Thus, we can see that all Green functions satisfy all requirements of the 
local quantum field theory. The following correlations are valid for the 
Green functions D~,po-(x) and (~) D~,~,o=(x) 

D;~,o,~(x)=O(xO)DL!o,~(x)+ o (+) O(-x )D~..,p~(x) 
(6.63) c* D~,~,p,~(x) = o (+) O(_xO)D(-)p,~(x) O(x )D~.~,p~(x)+ 

It is easy to observe directly that, similar to the case of  the usual theory 
of  quantized fields, in the gravitational theory with the above-defined Green 
functions (or, equivalently, with the quantum fluctuation of  the space-time 
metric) there exist ultraviolet divergences connected with singularities of 
these functions, i.e., functions (• D,~.o=(x) and D,~.o~(x ) not defined on the 
light cone x 2 = 0. To remove the ultraviolet divergences from our theory we 
use the hypothesis of  the existence of a fundamental length in nature and 
change the Green functions in accordance with the nonlocal or stochastic 
regularization method employed in Namsrai (1986b). 

6.6. The Change of the Newtonian Law and Form Factors of the Theory 

To construct a theory with quantum fluctuations in the space-time 
metric we introduce a fundamental length into the physical processes by 
means of  a change of the Newtonian law at short distances. We assume that 
in the static limit the Newtonian potential is given by 

~p(r) = G(2~-) -3 f d3p e-ipr[rff*~ ~'aII.~.o~(p)]p-2/10 

= G/4rrr (6.64) 

Such a definition of the potential leads to the idea that if one believes in 
the changing of the Newtonian law at short distances due to the graviton 
field carrying information about the space-time structure connected with 
the existence of  the fundamental length in nature, then the propagator or 
the causal Green function of the graviton is inescapably modified and 
in the general case should take the form 

D~,,p~r(X) = i-1(27r) -4 f d4p e-ip(x-Y)li~zv, po,(p) V(p212)(p 2-  ie) -1 (6.65) 

where V(p212) is an arbitrary function of the variable (-p2+p2)12, the 
explicit form of which depends on the concrete method of  the regularization 
procedure. Here we call the parameter l, of  the dimension of length, the 
fundamental length. If  we employ the Pauli- Villars regularization method, 
then 

V(pZl2)=(l+p2/AZ) -~, v>_2 
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where A-~ M =  h/ic plays the role of the universal mass value. Thus, a 
multiplier of the type of 

p-2(1 +pZl2)-I or p-2(1 +p212)-2 

may be obtained in (6.65) due to the following formal procedure: 

(1) p-2-(l-2+p2)-l=p-2(l+p212)-I (6.66a) 

(2) p-2-(l-2+p2)-~-21-2(1-E+p2)-2=p-E(1+pE12)-2 (6.66b) 

and so on. 
Notice that, on the other hand, in accordance with the scheme formu- 

lated in Efimov (1977, 1985) and Namsrai (1986b), formula (6.65) is 
equivalent to introducing a nonlocal graviton field, and the vacuum expecta- 

�9 tion value of its T-product operators gives just the modified propagator 
(6.65) of the theory, where V(p212) is an entire analytic function of  the 
argument z = p212 and decreases rapidly enough in the Euclidean direction 
of the variable z ~ oo. 

We distinguish here some possible versions of the Newtonian potential 
depending on the concrete form of the form factor of the theory. For 
example, without loss of generality let us consider the Pauli-ViUars regu- 
larization prescription: 

(pl(r) = ( G/ 4zrr)(1 - e-r~1), 

(p2(r) = ( G/ 4~rr)[1 -cos(r/Ix~-2) e-r/t~], 
~o3(r) = ( G/ 4~r)[1-1( 2 + r/l) e -rIll 
~o4(r) = ( G/gTrr){1 - ~[8 + 5r/l + (r//)2] e-~/t} 

for Vl(p212) = (1 +p212)-, 

for V2(p212) = (1 +p4/4)-1 
for V3(p2l 2) = (1 +p2/2)-2 

for V4(p212) = (1 +p2/2)-3 

(6.67) 

Now we calculate the Green function (6.59) at the point x 2= 0 for these 
form factors Vi(p2/2). Thus, 

c _ _ 5  D~,~,p~(O) - ~(~7~,p~7~ + ~ / ~ .  - �89 (6.68) 

where the function 

/)q(0) = G(2~)  -4 1 d4pp-2V(p212) 

I oo for VI(p212) t 
~T31- 2 

= G ( 2 T r ) - 4  • /'/r21-2 forf~ V3(p212)V2(p212) (6.69) 

t~r2/-2/2 for V4(p212) 

is finite in the light cone x 2= 0. 
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The theory with entire analytic form factors was considered by Efimov 
(1977, 1985) and Namsrai (1986b). Dineykhan and Namsrai (1989) present 
the stochastic quantization method based on random field-like white noise 
with nonlocal distributions leading to the appearance of entire form factors. 
At present, a synonymous definition of the form of the form factors of the 
theory is not known, and needs a deeper study in this direction as well as 
another fundamental physical principle (or complete physical information 
about possible verification of the Newtonian law at small distances). 

6.7. Definition of Physical Quantities in the Theory with Quantum Metric 

6. 7.1. T-Product and Vacuum Expectation of Quantized Quantities 

As shown above, introduction of the quantized field ~ ( x )  of (6.1) 
into our scheme leads to a theory with a quantum fluctuation of the 
space-time metric (6.33). We observe that in such a theory all physical 
quantities become operator-valued ones through the metric tensor. Now we 
address the question of how to define these quantities in space-time with 
the quantum fluctuating metric. Our basic assumptions are the following: 

1. Let F be any physical quantity; then, by definition, its value in 
space-time with a quantum fluctuating metric acquires the form 

F~tr[e]  = TF (6.70) 

where T denotes the T-product symbol acting on the quantized fields g,~(x) 
entering into the quantity F through the metric tensor. 

t3_ ^ 2. The averaging procedure for the quantity -F[e]  is reduced to 
taking its vacuum expectation value 

Fph ---- (Jt~[ e])q = (01T/~[O) (6.71) 

We call the latter an averaged or observable value of the operator-valued 
quantity/~[e]. Now let us list some properties of the T-product operations 
of operators ~ ( x )  [for details, see Namsrai (1986b, Section 2.5)]. 

3. Let us introduce the operator/~[e]: 

/~[E]= n=0n- ~ l ! d 4 X l ' ' "  f d4XnRn(Xl' ' ' ' 'Xn)z[~(xl) ' ' ' f f (xn)] (6.72) 

The operator/~[e] is defined by a set of functions {Rn(Xl,. . . ,  x,)}. Let us 
define the operation of conjugation 

[ ~ , ~ ( x ) ] *  = e~.~(x) 
Then, for the operator/~[e] in (6.72) we obtain the expression 

R*[e]  = E 1 d 4 x l . .  " d4xnR,n(Xl . . .  x n ) T [ ~ ( x l ) . .  " ~(Xn)] 
n=on[ ' ' 
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4. Now we determine the operation of multiplication of two operators 
/~l[e] and/~2[e]  of  the type of (6.72) by definition: 

}i a 

x R m ( y l , . . . ,  ym)r[~(xa) ' ' "  ~ ( x , ) ~ ( y l ) ' ' "  ~(Ym)] 
(6.73) 

6.7.2. The Operator-Valued Transformation of Coordinates and the Special 
Theory with Quantized Field 

To obtain the quantum fluctuating metric form (6.33) or (6.38), consider 
the operator-valued transformation (1.3) and its Jacobian (1.10). As above, 
the condition d 2 ~ / d r  2= 0 leads to the equation 

d2x A dx At dx ~ 
_ _  A~ = 0 (6.74) 
dr2 + YAt~ dr dr 

if we use of  the definition 

rfOX__2 o2e ~ } 
3'Ate= [O~ Ox ~ Ox ~ (6.75) 

which ensures the symmetric property of the quantized affine connection 
- ' ,A - "A  YAt~ = Y-At" In this case, the proper time (quantized) is defined as follows: 

dr2 = -g, At~ dx" dx ~ (6.76) 

where 

T f O~ 0~t31 
g~=rl~t3 ~ x ~  Ox~ (6.77) 

The latter yields the metric tensor (6.38). 
The multiplication rule (6.73) allows us to establish the connection 

between quantized quantities 3'At~ and gate: 
A o -  _ _  1 ~ v o -  A A A At  ~ YxAt-iT{g [OgAt~/Ox +Ogx~/Ox -OgAta/Ox ]} (6.78) 

where we have used the definitions 

\ Y x U  @ t o ~  ~ ox At ox j t o ~  ~ ox At ox ~ Tx ~] 
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and 

since one can rearrange operators entering into the T-product operation. 
In the relation (6.77) the inverse metric tensor (quantized) ~ is defined as 

X v X cr 

(6.79) 

In the weak-fieM limit it coincides with the expression (6.42). Now it is not 
difficult to reiterate all the considerations listed in Section 1 by using the 
definitions (6.70), (6.71), and (6.73). For example, the expression (1.26) 
and its averaged value (1.29) for the proper time in the quantum fluctuating 
space-time metric acquire the form 

and 

= d x  

: (01a [0> = (1 -v2/c2)1/2[1 + ~4/)q(o)] (6.80) 

where g, , (x)  and/gq(0) are given by (6.77) [or (6.38)] and (6.69), respec- 
tively. In the given case, the square of the spatial distance is also defined, 

d l  2 = "Yi/ dx i dx j 

with 

and in the weak-field limit its vacuum expectation value is 

dl~ = (Old~2]O)= dl~(1 + ~/)q(O)) (6.81) 

Space-time with a quantum fluctuation in the metric also gives rise to 
the appearance of an additional potential 

- goo - ~eoo) (6.82) 

and to the changing o f  the particle energy 

= me2(1 -v2/c2)-1/2(-~,oo) 1/2 (6.83) 

and their vacuum expectation values are given by the formulas (1.73) and 
(1.75), where/) (0)  should be replaced by/)q(O) defined in (6.69). 
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6.8. Modified Gravitational Theory with QuantUm Fluctuating Metric 

It is not difficult to reconstruct the general theory of relativity with a 
quantum fluctuation of the space-time metric. For this purpose, we use 
results obtained in Sections 2-5, where the space-time metric has been 
regarded as a stochastic quantity. In the given case, the general equivalence 
principle is easily reformulated in accordance with the method expounded 
in Section 2. For example, using the definitions (6.70) and (6.71), we can 
obtain the analogous equation to (2.6), that is, 

d 2 z ~  " ; t  dz~' dz~ 
d~.2 + F~,~ dr dr = 0 (6.84) 

where the quantized affine connection is given by 
^ o "  1 ^ v o -  ~ A I' /~ ^ v 
F ~ , ~ - ~ T { G  [aG, . . / a z  + a G A . / a z  - a G ~ / a z  ]} (6.85) 

and, by definition, the metric tensor G+~ reads 

[ Oz ~ o z ~ j  "Oo~ = T g~t3 0z ~, ~ z ~ j  

g O ( z )  + ^ 1 Ao ~, = e~,~(z) +zT{e~ , ( z )e~o(z )}  (6.86) 

Here 

OX '~ OX  13 

g~ = 71~ Oz ~, Oz ~ 

is responsible for a purely external gravitational field and becomes 7/or 
when the latter is absent (z ~ - x~). 

In the Newtonian approximation, equation (6.84) has the standard form 

d2z 
dt 2 - �89 (6.87) 

where 
,~ 1 ,",p ^ 

Hoo = --2fbN + Coo(Z) +aT{eo (  z)eoo(Z) + 2~o2o(Z)} 

and the space-time metric is 
d ^ 1 A ^ oo = - 1  - 2fbN + Coo(Z) +gT{e~(z )eoo(Z)  + 2go2o(Z)} 

In the latter case, the potential force is given by the vacuum expectation 
value: 

r .  = <ol lo> = <ol T{1 + 3goo(Z) ~oo(Z) +�88 - 2 ~  }lo). FN 
o r  

F q = [ 1  3 e 1 co, + zDoo.oo(0) + zDo.o,(0) - 2~bN ]FN (6.88) 

where FN =--V6N is the Newtonian  force  and D~o.oo(0) is the value of the 
propagator of the graviton at the point x = 0. 
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Notice that due to the quantum fluctuation of the space-time metric, 
a contribution to the red-shift value also occurs and its vacuum expectation 
is 

( A ~ / / ] ) q  = r  - -  C N ( Z , )  - J - l [  ( ~ N  ( Z 2 )  - -  r  2 

- [  ~b~(z2) - r -�88 - 3 CN (z2) + 7r (zl)] 
1 cp - aDo.op(0)[ r (z,) - r (z2)] 
1 c 

-aDoo.oo(Z, - z2)[1 - r (Z2) -- 36N (Z,)] 

Even in the absence of the external gravitational field defined by the 
Newtonian potential CN(z), the red-shift contribution due to the pure 
quantized radiation field e ~ ( z )  remains: 

aDoo,oo(0) - aDoo,oo( zl - z2) 

which is the standard form in our scheme. 

6.9. Tensor Analysis in Space-Time with Quantum Metric 

By using the T-product definition of physical quantities, the tensor 
analysis in space-time with quantized metric t ~ ( z )  and operator-valued 
affine connection F~,~(z) are easily reconstructed in accordance with Section 
3. As above, in the given case, we have at our disposal three systems of 
reference: 

(a) The local inertial system of reference s c~ with the Minkowski metric 
r/~/3. 

(b) The "quasilocal" or "quasi-quantum inertial" system of reference 
x ~ with the quantized metric 

& . (x )  = n ~  + ~ + � 8 8  

(c) The general system of reference z ~' with the metric (quantum) G. . .  

Thus, the chain rule is valid for the force F~: 

Since the operator-valued transformation matrix Ox ~/0~ '~ with the quantized 
field e ~ ( x )  is given by the analogous formula (1.12), one gets 

A f a z  ~" } 
~ e ~ ( x ) + a e ~ ( x ) e p ( x )  "]f2 F ~ ( z ) = T ~ 0 - - ~ [ ~ : - I A ~  l a p  A. - - . .  

,-32 ~ ..~7 ,~ _ ~ v_]_ ~ a 1 ^ v  1 ,',p u -Tx~f; 7x~fy T { - ~ e ~ + ~ e ~ ( x ) e A x )  . . . .  } 

in the weak quantum field limit. 
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Tensor algebra operations in our scheme are the same as in the previous 
case (Section 3) with the exception of the lowering and raising operations 
and of the covariant derivatives to be carried out by means of the quantized 

^ A  metric tensor G,~ and the affine connection F,~ respectively. 
It is natural to define the determinant of the quantized tensor G.~ by 

the formula 

Gq = -(0]Det G.~]0) (6.89) 

since in the definition of G.~, the T-product symbol is involved. 

6.10. Gravitational Effects and the Einstein Equation in Space-Time with 
Quantum Metric 

Mechanical and electromagnetic processes in the presence of gravity 
with the quantized metric G~.~ may be considered by the same method as 
in Section 4, where we should change the stochastic metric by the quantum 

A �9 )t �9 �9 �9 ^ A  
one G~,  the affine connecnon F ~  by its quantlzed version F ~ ,  and the 
determinant of G~  by its vacuum expectation form (6.89). Here the stochas- 
tic averaging procedure is replaced by taking the vacuum expectation value 
for quantized expressions which involve T-product operations. 

To construct Einstein's equation in space-time with the quantized metric 
G~. we use the definition of the curvature tensor (5.5), whose form in the 
given case is 

A A ^ ~ ^ A ^ 

T[F,~F~, -  ~ - o F ~ J o z  + " ~ F,~F~n] (6.90) = aF~Jaz  ~ R ~ ( z )  ^~ 

By using this quantized curvature tensor, the Ricei tensor can be defined as 

-= R~,~ (6.91) 

and the scalar curvature 

T[G R,~] (6.92) 

For further consideration it is convenient to use the following 
representation: 

^ ! A A ^ r /  ^ o "  ^ r /  ^ o -  

R . . ~  = 2N...~ + T { Q . [ F  ,AF.~ - r (6.93) 
A A 

where the quantity N~.~ is given by (5.12) with the metric G.~. In 
A A 

order to define the vacuum expectation values of R.~A, R.~, and R (or 
A A A 

G..R) we first give this averaging procedure for the " affine connection F~,~(z), 
for which an expression of the type of (5.6) is valid: 

~L(z  ) = o, + r{_�89 ~ , ~ ~ (z)e~(z)yp,.~,+~go ~o;.~' 

_�89 ) _ f,A O(e3)} (6.94) 
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in the weak quantum field limit, where the quantities yp;~(z), ~p;~(z), and 
/~p;.~(z) are defined by (5.7) with ~ .  Before averaging an expression of 
the type of (6.94), it is important to notice that the well-known relation 

(01T{O,~u~(x) 0agpa (y))[0) 

= (O2/Ox ~ 0ya)(0] T[~(x)~o~(y)][O) (6.95) 

holds for the T-product of quantized fields g~,.(x). In other words, the 
T-product in the Wick sense coincides with the T-product in the Dyson 
sense, i.e., symbolically Tw = To. Thus, the following correlations take 
place: 

O.OaD~,,.(x) = O(x~ + O(-x  ~ O.OaD~+~o~(x) 
(6.96) 

O(x )O~OADu~.p~(x) + O(-x  )O~OxD.~,o,~(x ) 

From the relation (6.95) and the explicit form of the causal Green function 
(6.65) it follows that 

(ol �9 

= --(27r) -4 f d4p H~,p~,(p) V(p212)p~(p 2 -  ie) -~ (6.97) 

Thus, the vacuum expectation value of (6.94) takes an analogous form 
to (5.8): 

^ h  o, F~(z)  +~Da (0)3%~. (6.98) 

where 

and/)q(0) depends on the concrete form of the form factor V(p212) of the 
theory, which, in this particular case, is given by (6.69). 

Now let us define the vacuum expectation values for the Ricci tensor 
/~,, and the contraction/~G~. The former in the weak-field approximation 
acquires an analogous form to (5.18), where the stochastic field e~,~(z) 
should be replaced by the quantized one ~ ( z )  and the T-product operation 
must also be involved. After taking the averaging procedure in accordance 
with (6.59) and (6.95), the contribution to R~ due to the quantized metric 

A s r 
G~,~ depends on the functions D~,~,p~(0) and D1p~,~,;~A(0) defined 
by the same formula (5.25), where one needs to replace 8~.p~7/~p, 
/9(0)~/5q(0), and 

b l ( 0 ) ~ 5 1 q ( 0  ) = G(27r) -4 f dapE Y(p~12)<~ (6.99) 
d 
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Thus, after elementary calculations as in Section 5.3, we have 

<oPL~lo>--- R% + <010.~10> (6.100) 

where 

" 15 " 1 1 [ \ 6 4  13 - 5 ~ (O[Q,,~lo) = 

x [2y_~;ra~,~ ~ - Ye;,~e~;~e- 1 

1 OvA Op Op 
+~ye,~_Aye;~._~-9g ( % . v A F ~ - % ; ~ F ~ ) ]  

5 ~ 27 0 O~q Oct O'q 0o" +~Dq(O){Tg.~(F ~_~F .~ - F._x F._~) 

r~rOXrO~ rOArOv rOvrOX t g ro~ron  rO~ll~O~ ~] 
- -  L ~ X  p A x . ~  - -  x ~ A  I ~ v - - . L x A - t l . . ~ v - - ~ \ . t h A J - i ~ - - X u A . t l x A / l  

@ 9 ~ o h v / p O y r O y  o ~  0]7 5 * o v a  8s x-~x~.~ -F~xF~)}+~Dq(0)g  
27 _ + 1 0 _ 

X{~(',/.;,.;,/~;~,, -- '),~:.,~'y_.;,.,.) ~[g_._.(~,e;~x3,e;.~ ',/e;,,,,.,,e;,.,. ) 
1 0 5 

-Opp - 0  - 0  x [31g g . . - 2 O g ~ -  14(~~176 + lO~~176176 (6.101) 

where we have used the notation 

- - 0  _ _  O V A  ~ O p p  " g . ~ =  g r/w~x~, ~gO~ ~7o~' 

and have distinguished two types of summation over indices: 

and 

F 0 a l " 0 v  - - ~ ' ~ A . v = 0 , 1 , 2 , 3  r~176  = ~ a P B a v r ~ 1 7 6  vAat  p , ~  ~ x u A x / ~  ~ ~ ~ v p ~ i x ~ <  

since the Euclidean metric 8 x~ = 8~ possesses the property 

~-rx~  T ; ~  6~T  x=  T ~ or . .~-~ = 

for any tensor quantities T ~ and T~ ~ 
An analogous calculation yields 

(ol T [  C~,.,,~ ][0) = R~176 + ~R~ (0) r/.,, - ~/gq (0) (2R~ - �89 ~ 
15 " 0 - 0  0133" ,', *' +~D~(O)g.~R +g <01T[~.~M~AI0> 

_ o ot~t3' ~ ^ # ~ '  ^ g~,.{g (olQ~AO)-(olr[~ Mm~,]10)} (6.102) 

where/~o= Vm~'R~o, ' and <olr is given by formula (6.101). Therefore, 
it only remains to calculate the term of the type of (01 ^ T[ e.~Ma~,]IO), where 

A 
the expression Mmr is defined by (5.19a) with the quantized field e~... Now 
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we calcula te  the te rm 

= gO /3,(ol r[  Io> 

Taking  into account  the explicit  fo rm (5.19a) for  the quant ized  express ion  
M,~, ,  We have  

: / . ~ ,  _ $ ~ r l  ~o/3~' /r  I ^ 2 = =.../3~/3,s , . . ,T[~"~'&. ] lO)+{g~176 
0 A Ofl13 0 ^ "Oo" +g g g..(OIT[~,. .A,/3.~/3,] IO) 

+gO,~,8'(0l{ T [  &,,~. 7o.]. gOa~ _ g O .  T[,~j""]}[0) 
rrO,rO~ _ t o ,  r O ~  (6.103) X k ~ v A  J. /3/3, ~ , A ~ / 3 v /  

where  ~ is def ined by  (5.21). We calcula te  each te rm in (6.103) sep- ~ 1/3Av/3' 

arately.  The  first te rm gives 

H ' . -  _,.o/3/3,,,, , , .  . - -  --2a; ~,A/3./3'" o . o ~ - - ~ r /  r/ , , . , . . )  

_ 5 ~ ~ / ~ '  ~ " ~ ~ N.m,/3' - - T~Dq (0)g (N.~./3, + - ~r/~.N_~/3~/3,), 

(N_~/3a/3, = ~ / * ~ N ~ / 3 , )  
2 To obta in  the explicit  fo rm o f  the second te rm H ~ ,  it is necessary  to carry  

out  a long a lgebraic  calculat ion,  with the fol lowing result: 
2 5 0A~ 0/3/3' H ~ , , = ~ g  g (~/~/3,~/~A ~/.. + r / /3~,r /~rh~ - ' O ~ , r / ~  r h .  

-r//3,~,r//3xr/,,~ -- r/ /3 , ~ r/ /3 /r/ x ~ -- r//3,x ~T&,r/~ ~ -- r/~,~r/~rh, a 

+2'r//3,. 'r//3.n.,, + "r/~,,,'i'/~.'r/~.) X D,q(O) 
5 " - 0  - 0  

= ~D,q(O)[4g  g . .  - ~ . ~ ( r 1 6 2  +gpp,g-O Opp'rl~,~] 

where  
- 0  _ _  OAr - - 0 '  _ _  r~O rrO~ 

Taking  the v a c u u m  expec ta t ion  value for  o ther  te rms in (6.103) is not  
difficult. They  are 

H 3  5 ~ .,o/3/3' o a r  0 p n -- lsDq(O)g g gn,~[(8~, ,  4- 8,~8~ p "--�89 

" 8 . 8 ~  - -~r  I rl~,~s 

- 1~, ; ~ ' r  ~, ) ] 

Further ,  we assume that  gO gOp,~. = 8~', and therefore ,  
0 "rl 0o" 1 

g n,~ l ~"  = :'Yn;t3/3' 

with this expression,  the te rm H 3 .  takes the fo rm 

H ~ , ,  = ~s/)q (0)g ~176 Y~;/3'* ,y, ; , .  + %, ;o'A Y~,/3. 

- T.;~a'Y.;/3/3'- Y.;~a ~'~;/3/3' 
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By the same method as employed above, the last term in (6.103) is easily 
calculated: 

4 

0 A v h v 1 h v  O'q 0o- O'r t 0o" 

5 " 0/3 0 ,  1 0~/ O n 
= ~Dq(0)g {~'q~,,,(FeeYn;mv-Ftveyn;t3 e ) 

O~ 1 0~9 -Fg~ ~/.;~. + ~(F ~,~ ~,~;~ + F~;~ ~/.;a~) 

OAr 0 0 0 0 0 0 0 0 +g [F~,;~F~;t~ ~,-  F~;t~,~F~;~ + F~;~F~,;m~,- F~;~,xF~,;~ 

1 r  t o n  r o n ~ l t  

where 

FO_•po_• _ p O ~ r O p  o o~ . x l  ,8~,-- "r/p~ ~.,x.. ,8~, ; F~;~ - 'r/,~o-I" vx 

An analogous calculation may be made for the last term in (6.102). Thus, 
all the necessary terms in (6.102) are calculated by using (6.101) and (6.103). 

Now we are able to rewrite Einstein's equation in space-time with the 
quantized metric G~.  The expected formula for this equation is 

T{R,,,  --~G~,,R} = -8 ,n 'GT~ (6.104) 

In accordance with the general covariance principle formulated in Sections 
3-5, the energy-momentum tensor T~,~ in our scheme is defined as 

T,~(z) = T [oz" Oz ~ =Oz ~ Oz" \Ox" Ox~,] 

Here the operator-valued Jacobian of transformation O~"/Ox '~ is given by 
(1.10) with the quantized field g~(x). 

The vacuum expectation of equation (6.104) may be easily calculated 
by using expressions (6.100) and (6.102). In the case of the quantum 
fluctuating space-time metric the Bianchi identities (5.42)-(5.44) and the 
coordinate condition (5.45) are also fulfilled if we choose the T-product 

^ h  operation in the definition of the operator-valued quantities Guy, F,~, 
and R~'~; for example, equations (5.44) and (5.45) now take the form 

^ / x v  1 A/xv  ~ - -  A ^ 
T{R - 2 G  R } ; . - 0 ,  ~X~ T{GU.F~}x _-0 

In conclusion, notice that Horowitz (1980, 1981) used an axiomatic 
approach to the construction of an expectation value of the stress tensor 
and obtained a nonlocal expression, which he then used as the right-hand 
side of the Einstein equation (6.104). More recently, this formalism was 
developed by Jordan (1986, 1987) (see also Biernacki and Kr61ak, 1986). 
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7. PHYSICAL CONSEQUENCES OF THE THEORY WITH 
STOCHASTIC AND QUANTUM SPACE-TIME STRUCTURES 

As shown above, the introduction of the hypothesis of stochastic and 
quantum fluctuating metrics into the physical theory leads to a change of 
the particle mass [(1.76), (1.79)] and the Newtonian potential (6.67) and 
also to the appearance of  an additional force [(1.50), (1.55)] in the micro- 
world. In this section we will consider other consequences of the theory of 
interest. 

7.1. Speculation about Force of Inertia 

The origin of inertia presents one of the fundamental problems of 
physical the,~:ry. Newton and Mach considered this problem in different 
ways. Newton assumed that inertial forces such as centrifugal ones must 
appear due to acceleration with respect to "absolute space," while Mach 
suggested that inertial forces are more probably generated by the general 
mass of heavenly bodies. The difference in their assertions is not metaphy- 
sical but physical, since if Mach were right, then a large mass would give 
rise to small alterations of the inertial forces near it, while if Newton were 
right, then such effects would not appear [for details and further discussion 
see Weinberg (1972) and Bertotti et al. (1984)]. Here our goal is modest; 
we consider only some possible explanations of the origin of inertial force 
from the point of view of  stochastic and quantum fluctuations of the 
space-time metric. 

We assume that, due to the existence of the cosmic background radi- 
ation stochastic field e ~ ( x )  [or quantized field g~(x)] ,  the inertial system 
of reference is slightly changed [a useful discussion of such possibilities 
was presented by Bertotti et al. (1984)], in which there always appears some 
additional small "'potential" force 

F (s'q) = - V @ f  = V ~ ) ( s , q  ) (7.1) 

(Of course, the term "force" used here is not in the direct Newtonian sense 
and in general relativity it should be related to the gauge group concept, 
as in all contemporary geometrized versions of Maxwell and Yang-Mills 
gauge theories.) Where 

1 2 6s = ~oo(X) +~(X)~op(X) 

and 

= ~ T[eoo(X) + geo(X)eoo(X)] ~) q 1 "~. 2 1 "~ p ^ 

in accordance with the existence of stochastic e,~(x) and quantum g~,~(x) 
fields, respectively. In the presence of a particle, it is suggested that both 
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the distribution function /~(p2) in the correlation (e~,v(x)e~8(y))~ and the 
form factor V(p2)/p 2 in the causal Green function (OIT[g,v(x)~p~(y)]lO) 
depend on the momentum variable Po of  the particle and are located at the 
point p = Po. With this assumption each particle, due to the stochastic (or 
quantized) field e,~(x), generates around itself some "potential"  force 
proportional  to its momentum Po. For this purpose, let us consider the 
particular case when 

V(p2)p -2 = (p - po)-2[ 1 + (Apo)-2(p -- po)2] -2 (7.2) 

where 

Apo = m Av/h; Po = m v / h  

Then-tl~e "potent ial"  force (7.1) when averaged takes the form 

Fq = ~ G ( 2 ~ r )  -3 I d3p p(p - P~176176 + (p - P~ 

= ~:Gpo(APo)/48~r (7.3) 

where the sign ~: depends on the definition of  the factor exp(~:iqx). This 
" force"  has dimension of  [G/LZ], Where 

G = 6.67 • 10 -1t N m2/kg 2, [po] = [L -1] 

Thus, each particle undergoes a proper  action with the "force"  

F = ~:Gpo(&po)m2/48~r, Po = m v / h  

due to the stochastic (or quantized) background radiation field ~,~(x). 
When the particle is at rest, the force disappears and as soon as the particle 
starts to move, the " force"  simultaneously begins to act on it, It is easily 
seen that even in the macroworld this force becomes appreciable. For a 
macroparticle it is reasonable to assume 

IFI ~ m2G/487r(As) 2, As = v At 

where At is a characteristic time during which the particle's velocity is 
noticeably changed. For example, let a particle with mass m = 10 kg move 
with the change of  velocity from zero to 1 m/sec  during the time interval 
At-- 10 -6 sec; then the expected inertial force becomes sufficiently large: 

IFI = 44.3 N 

Notice that instead of (7.2), another form factor of  the type 

Vl(p2)/pe=p-2[l+(Apo)-2(p-po)2] -~ n>_2 

may be chosen, which leads to a complication in the calculation procedure, 
but the result remains the same. 
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7.2. Acceleration Mechanism of Cosmic Rays 

Let us consider now other interesting problems, connected with the 
origin of cosmic rays in high-energy astrophysics. The acceleration mechan- 
ism that carries cosmic rays (particularly protons) to energies of 1020-1022 eV 
in the primary cosmic radiation remains unsolved (Ginzburg and Ptuskin, 
1976; Hillas, 1975). Namsrai (1986b) attempted to understand this problem 
from the point of view of the hypothesis of space-time stochasticity and 
fluctuations in the metric. 

We show that this problem may be easily solved by using the inertial 
force (7.1). It is quite possible that cosmic-ray particles satisfy the equation 
of motion 

dv 
m ~-  = const �9 p (7.4) 

in accordance with the definition of inertial force (7.1) and (7.3). This 
equation may be rewritten in the form 

dE 
- -  = const. E 
dt 

with t~e solution 

E = Ea exp(const, t) (7.5) 

By appropriate choice of the constant in (7.5), it may be shown that during 
the time of evolution of the universe the cosmic-ray particle energy (mainly 
proton) reaches 1019-1020 eV [for details, see Sinha and Roy (1986) and 
Namsrai (1986b)]. 

7.3. Quantum Mechanical Consideration 

It turns out that our hypothesis of stochastic or quantum fluctuation 
in the metric leads to some interesting consequences due to the fact that 
the Hamiltonian of a physical system is changed in accordance with the 
formulas (1.75) and (1.78). We consider here the latter case only. Thus, for 
the form (1.18b) of distribution, the Hamiltonian of the system undergoes 
the following change: 

pZ/Zm ~ (p2/2m)(1 -~G1-2)  (7.6) 

where we have taken into account the quantity 

fi,(O) = G/ l ~ 



692 Namsrai 

for any distribution satisfying the.condition 

(27r)-4 f d4q D~(q2) = 1 

With the change (7.6), the Sehr6dinger equation acquires the form 

at) + (2m/h2)[E - U(r) - I)'] t) = 0 (7.7) 

for the stationary states, where U(r) is the external potential field and 

_h__~ 2 - -  
p ,  5 GI_2A (7.8) 

2m 12 

Here 

= r-2 a ( r2a l s r ) l a r -  r-2L2 

is the Laplace operator written in the spherical system of coordinates and 
I, is the angular momentum operator. 

As usual, the solution of equation (7.7) is presented in the form 

t)= R(r) YLm( O, ~) 

where the angular part YLm(O, ~) satisfies the equation 

~2 rLm = L(L + 1) YLm 

whence its radial part R(r)= x(r)/r  is defined by the equation 

d2x/ dr2 +[(2m/ h2)(1 - I~GI-2)-1(E - U) - L(L + 1)r-2]X = 0 

Due to the second term in (7.6) the energy level of an electron in an 
atom undergoes an additional shift given by the formula 

AEn = f dr  t)~)* V't)~) (7.9) 

Here we have assumed that in the given case the perturbation theory is 
applied, where 1~' represents a small correction ("disturbance") to the 
"unperturbed" operator/4o. 

It is interesting to calculate the correction to the Lamb shift AE(2S1/2- 
2P1/2) due to a stochastic (or quantized) fluctuation in the metric. To define 
this correction, we consider the unperturbed normalized wave function 
written in atomic units 

R2o = (l/v/2) e-r/2(1 - r/2), R21 = ( 1 / 2 x / ' 6 ) r e  - r / 2  
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for the hydrogen atom ( Z =  1). Then taking into account (7.8) and 
(7.9), we have 

and 

AE~s)=4~G1-2 drr  2 e - r / 2 ( 1 - r / 2 ) [ d 2 / d r 2 + ( 2 / r )  d /d r ]  

x e-r/2(1 - r/2)  = -9~G1-2 

AE~2~ ) = 5(24)-2GI -2 dr r 2 e -r/2 r 

x [ d 2 / d r 2 + ( 2 / r )  d / d r - 2 r  -2] e-r/2r 

= _ ~ G 1 - 2  

Now the shift AE (2S1/2 - 2P1/2) in hydrogen takes the form, in natural units, 

A E ( 2 S I / 2 - 2 P 1 / 2 )  = -~-~GI-2rna2h-2/2  = -~-~G1-2. Ry  (7.10) 

where Ry = m a 2 / 2 h  2 is the Rydberg constant. The agreement between AEcal 
and AE~xp in quantum electrodynamics within the present accuracy is 
- 1 0  -11 Ry (Erickson and Yennie, 1965; Lundeen and Pipkin, 1981); from 
this we obtain the following estimation: 

I ~  > 10 -28 cm 

7.4. Relativity, Anisotropy of  Inertia, and the Value of the 
Fundamental Length 

Owing to the above considerations, the stochastic (or quantized) nature 
of  the space-time metric at short distances, after averaging (or taking the 
vacuum expectation) over a large scale, plays a role in the formation of an 
anisotropy of the universe and, in turn, gives rise to a slight change of  the 
laws of  motion of a particle in the inertial system of reference. It is natural 
to assume that the appearance of anisotropy is caused by the additional 
force obtained in the previous sections. In other words, this force may be 
understood as the source of a small difference in the values of gravitational 
and inertial masses. 

On the level of the usual theory of gravity, in connection with the 
verification of Mach's principle of the possible influence of large mass 
accumulation (for example, in the presence of  the Milky Way) on the laws 
of  motion of  a particle, experiments (Hughes et al., 1960; Drever, 1961) 
devoted to testing the existence of a small difference in inertial mass have 
been carried out. Hughes and his team observed resonance absorption of 
photons by 7Li nuclei in a magnetic field. The experimental result is that 
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if  one can represent a nucleus of  7 t i  as a proton with angular momentum 
j = 3 which is connected with other nucleons in a central symmetric potential, 
then the anisotropy of  the proton mass Am must be equal to 

AE = n (p2 /2m)  ~ ( A m / m ) ( p 2 / 2 m )  ~ 5.3 x 10 -21 MeV (7.11) 

where p2/2m is the kinetic energy of  the proton. Since p2/2m is larger than 
MeV, this is reduced to the assertion that the anisotropy of  inertial mass 

is bounded by (Weinberg, 1972) 

A m / m  ~ 10 -20 (7.12) 

We know that in space-time with a stochastic (or quantized) fluctuation 
in the metric the kinetic energy of  the particle is changed in accordance 
with formulas (1.75) and (1.78). This in turn gives an additional energy 
shift (7.9) for atomic level in the stationary case. We assume that this change 
of  energy level in 7Li is connected with the anisotropy of the proton mass 
given by (7.11) or (7.12). 

Thus, first we write the change of  kinetic energy due to the stochastic 
(or quantized) nature of  the space-time metric by means of the anisotropy 
of  inertial mass 

p2/2m ~ ~2 /2m  = p2/2(m - Am) = (p2/2m)(1 + A m / m )  

Second, this change is connected with the shift of the atomic energy level 
given by (7.9). Now let us calculate this shift for the case of  L = 1, n = 2, 
Z = 6. The wave function for the basic states, i.e., unperturbed energy level, 
is 

I]lnL = RnL YLm 

where 

R21 = (1/2V~) e-r /2r  

for Z = 1. For hydrogenlike atoms it takes the standard form 

R.L=~f.L(r) = N . L ( 2 Z r / n ) L F ( - n  + L +  1, 2L +2 ,  2Zr /n )  e -z ' /"  (7.13) 

where 

NnL = [ (2L+ 1)!]-l{[(n + L)!] /2n(n  - L -  1)!}1/2(2Z/n) 3/2 

is the normalized coefficient (for details, see Landau and Lifschitz, 1963) 
and F(a,  c, z) is the degenerate hypergeometricfunction. For our case, the 
expression (7.13) becomes 

f21 = (1/2x/-6)ZS/2r e -zr/2 (7.14) 
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With this radial function, the energy shift due to a stochastic (or quantized) 
metric is easily calculated; the result reads 

fo o AE(2~ = 5-~GI-2Z 5 dr r 3 e -zr/2 

x [ d2 /dr  2 + (2/r)  d~ dr - 2 r -2] r e -zr/2 

= -2 -~GI-2Z: (1  + Z )  (7.15) 

for the distribution function D~(q 2) satisfying the condition (1.18b). The 
formula (7.15) is expressed in atomic units. Thus, assuming Z = 6, we get 

AE(2~ = - ~ G 1 - 2 .  R y .  (mp/  me) (7.16) 

where hc. Ry = me e4hc/4zrh 3 = 13.6 eV, and a -- 0.529 x 10 -8 cm is the Bohr 

radius. On the other hand, relation (7.16) is bounded by the experimental 
value (7.11). Therefore, one can obtain the following estimation on the 
lower value of  the fundamental length: 

l -  > • -23 cm (7.17) 

Thus, we see that the anisotropy property of inertia is very sensitive to the 
quantum (or stochastic) fluctuation of the space-time metric at short dis- 
tances. Of course, the latter gives rise to the appearance of  the slight 
anisotropy of  the universe. On the other hand, from results given in Namsrai 
(1986a) it follows that 

l<~ 10 -22 cm 

Therefore, the value of the f u n d a m e n t a l  length lies in the interval 

10-23 ~ < l ~  < 10 -22 cm (7.18) 

This result is crucial in our scheme. 

7.5. Derivation of Upper Bound on the Value of the Fundamental Length 
from High-Energy Physics and Its Possible Scales 

It is well known that the high-energy colliding-beam experiments allow 
one to probe very short distances and in turn space-time structures. The 
main components of the colliding-beam experiments are storage rings in 
which high-energy particles are accelerated to expected limiting energies. 
Among them, e+e - and p~ beams are crucial for space-time and matter 
structure investigations. Major experiments in these directions may be 
undertaken upon the completion of the LEP electron-positron accelerated 
machine with collison energies of  around 100 GeV at CERN, the Tevatron 
collider complex at Fermilab, and others still under construction, including 
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the proposed U.S. Superconducting Supercollider (SSC), an 85-m, ring to 
provide 20,000-GeV (20-TeV) proton beams, and the 3-TeV superconducting 
accelerator and storage complex (UNK) at Protvino, Moscow Region, 
USSR. 

In this section we attempt to obtain the upper bound on the value of 
the fundamental length from high-energy experimental data, and speculate 
upon the possible existence of the energy scales EEw --100 GeV and ENW 
--5 TeV of the unification of electromagnetic and weak, and weak and 
nuclear processes, respectively. The former is called the electroweak 
unification (interaction), following S. Weinberg, A. Salam, and S. L. 
Glashow. The latter possibility is very interesting for the experimental 
verification of the theory. 

In order to deal with the theory of fundamental length, we consider 
the simple form of the Lagrangian function (Namsrai, 1985) 

^2 ~e = �89 ~R ( x ) ~ R ( x )  

where ~R(x) is a massless scalar field and 

~2 = [] cosh2(l~:--~) 

This type of momentum operator ~ was also discussed by Fujiwara (1980) 
from the point of view of three-dimensional quantized space. The equation 
of motion of this field is obtained in the usual manner (the principle of 
stationary action) 

[] cosh2(I--x/-~)~R(X) = 0 (7.19a) 

or in the massive particle case 

([] - m 2) cosh2[/( - [] + m2)l/2]~R (X) = 0 (7.19b) 

For the photon field A.(x) without the source field J~(x), 

~,,GOem : __1[ ~vA,(x)]2 (7.20a) 

and 

[] cosh2[l,/-z--~]A~(x) = 0 (7.20b) 

The applicability of the choice of Lagrangian form for the electromagnetic 
field has been discussed by 't Hooft and Veltman (1973). 

We see that these equations are differential equations of infinite order, 
i.e., they are in fact integral equations. In order to solve the Cauchy problem, 
we have to know the values of the functions ~pR(x) and all its derivatives 
at the initial moment of time. Thus, unlike the usual fields obeying differen- 
tial equations of finite order (in most cases, second order), we obtain new 
objects--nonlocal (extended) fields of the Efimov (1977) type. We denote 
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these objects by index R; for example, ~0R(x) and AR(x) are extended 
scalar and photonlike fields, respectively. Here, we are interested only in 
the Green functions of equations (7.19b) and (7.20b). 

Thus, our formalism coincides with the usual scheme of quantum field 
theory in the free particle case and therefore gives no new information in 
this case. However, in the virtual states of the particles, the formalisms are 
essentially different. We now consider this situation. The main object of 
the virtual state of a particle is its Green's function (or propagator). As is 
well known (see, for example, 't Hooft and Veltman, 1973), the propagators 
are minus the inverse of the operator found in the quadratic term of the 
free Lagrangian, for example, 

= lqO(X)([--] -- m 2 ) q ~ ( x ) ~ ( m 2 +  k 2-  ie) -~ 

This rule reads for the Lagrangian (7.20a) 

ff)~( k ) = g~/[  ( k 2-  ie ) cosh2(lv/-kS)] (7.21) 

On the other hand, the Green function Dn.~(x) is the solution of the equation 

[] cosh Z( lx/-Z~) D ~ (  x ) = g.~6(g)( x ) (7.22) 

The solution [the causal Green function D ~ ( x ) ]  to this equation is given 
by the contour integral: 

R Du~(x) = --guvDR(x) 

= --g~i-l(27r)-4 fc d4ke-ikX(k2- is  c~ (7.23) 

The contour of integration c is chosen as in the usual local theory and is 
determined by the "ie rule". 

It is important to notice that in our scheme ultraviolet divergences are 
absent, since R D~,~(0) < oe; for example, 

DR(0) = -i-1(27r) -4 f,~ d4k (k 2-  ie) -~ cosh-2(lv/k -7) <o0 

Indeed, after transformation to the Euclidean metric, we get 

DR(0) = -Tr2(2~r)-4 f o  du cosh-2(Ivr-ff) 

= --27r2(27r) -4 dxx cosh-2(Ix) 

= 1 1 n 2 . 7 - 2 1 - 2  
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At the same time as the photon propagator (7.23), the Coulomb law is 
also changed. Thus, the potential of two interacting charged particles 
acquires the following form in the static limit: 

Uc(r) = eE(2~r) -3 f dap p-2 e-iPr cosh-2(lv/~p 2) 

= (e2/2~r2r) dxx -1 sin(xr) cosh-2(lx) (7.24) 

From this, it is easy to see that Uc(O)<oo; indeed, 

Uc(O) = (e2/27r 2) f ?  dx cosh-Z(lx) = (-1/2~r=l)e 2 

~R We now give the Mellin representation for the propagator D,~(k) of 
the photon field. For this, making use of the expansion for c o s h  -2 X, 

c o  

cosh-2x=4/(e2X+2+e-2X)=-4 Y~ ( -1 ) "ne  -2"x (7.25) 
n = l  

we get 

c o  

c o s h - 2 x = 4  Y, (-1)"+In ~. (-1) k(2nx)k 
~=1 k=O k! 

1 f-t3-,o~ dp_ (2nx) p 
=4  ,=1 ~ (-1)n+ln2] J_t3+ioo" sin 7rp F ( l + p )  (7.26) 

where 1 > Re/3 > 0. Using the properties of the F(x) function, it is possible 
to move the contour of integration in expression (7.26) to the left through 
the point p = -1 ,  and in the obtained results one can take 

cx~ 

Y~ (-1)"+~n '+~ = (1-22+~ -O)  
n = l  

since R e ( - 1 - p ) > 0 ,  where ~(z) is the Riemann zeta function having a 
single pole at the point z = 1 and satisfying the following conditions: 

21-ZF(z)~(z) cos �89 = 7r~'(1 - z )  

sr(2m) = 2zm-a~r2m[B2ml/(2m)t 

sr(-2m)=O 

~'(1-2m) = -B2,,/2m, m = 1, 2, 3, . . .  
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In particular, 
~'(0) = I, ~(-1)  = -B2/2  = - ~  

Here B,, are the Bernoulli numbers; for example, 

B0 = 1, B1 = 1 ,  B2 = 1 

As a result, we obtain 

1 f-~-i~ v(p) x p 
c o s h  -2  x = -~  31-~+,~ dp - 

sm ~-p F ( l + p )  

where 
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2 < Y < 1 (7.27) 

v(p) = 4-2P(1 - 22+v) ~'(- 1 - p) (7.28) 

In particular, 

v ( -1 )  = - 1 ,  v(0) = 0, v(1) =0,  v(2) =2  

After these simple calculations we have the following Mellin representa- 
tion for the photon propagator: 

" R  D.~(k)=-g~.-s I dp l " (k2- ie )  0/2-~, 2 < 7 < 1  
Z1 d-,),+ioc sin ~'p.F(1 + p )  

(7.29) 

Representations (7.27) and (7.29) are very convenient for the purpose of  
concrete calculation. For example, by using the representation (7.27), the 
expression (7.24) for the potential Uc (r) is calculated explicitly and takes 
the form 

1 1 dp v(p) 
Uc'r'=2rr2r( ) 2i J-r+io~ sin ~'p-F(1 + p )  

x sin ~r r ( p ) ( ~ )  p 

_ 1 1 f - ' - i ~  ({)P ,  l < y < 0  (7.30) 
2~2r 2i -~+i~ cos ~ p  

Here the following integral is used: 

Io dXXO-~sinax=a-PF(p)sin�89 a > 0 ,  0<lRep[<l 
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Two cases should  be dist inguished: I / r> 1 (i.e., r ~ 0 )  and l / r < l  (r~oe).  
In  both  the first and second cases it is necessary to move the contour  o f  
integrat ion in (7.30) to the left and to the right, respectively. Thus, we have 

Uc(r)  = - (  e2/ 27r2r)[-v(-1)( l/ r) -I + ~v(-3 )(1/ r) - 3  + I ' (r /  I) ] 

= -(e2/27r21) - e2r21-3/144+ I(r / l )  

I ( r / l )  = 7e27r2r41-5/[(24)2100] (7.31) 

for  r < l, and  

Uc(r)  = e2/41rr 

for  1 < r. The funct ion Uc(r)  at r = 0 represents the so-called proper  electro- 
static energy of  the electron in the classical field theory. As seen above, in 
our  model  the p roper  energy of  the electron is finite, U c ( 0 ) - e 2 / L  This 
result coincides with the wel l -known classical e lec t rodynamic  value Uc(0) 
eZ/a, where a is the electron size (classical). In  the last case it is usually 
assumed that  the electron is a pointl ike object  with radius a. However ,  in 
our  case there is an interesting possibility: due to the minus sign o f  Uc(r)  
for  r = 0 (see Figure la)  two electrons m a y  form a whole  b o u n d e d  state, 
i.e., unlike the usual  classical theory,  in quant ized space-time the electrical 
repulsion between two electrons becomes  an electrical at traction at small 
distances. 

On the other  hand,  at distances r >  l our  potential  Uc(r )  reproduces  
exactly the Cou lomb  law [without  any terms o f  the type e2(12/r3), . . . ] .  This 
means that  quan tum elect rodynamics  is a beautiful local theory up to dis- 
tances l; if the true length is ~ 1 0  - 3 3  cm, then Q E D  becomes  local once and 
for  all. 

uc(r) 

e -  ~1- 

al 

Fig. 1. (a) Illustration of the change of the Coulomb potential due to quantized space-time 
at short distances. (b) Diagrams of electromagnetic leptonic processes giving the main contribu- 
tion to the scattering value at high energies. 
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An analogous calculation for equation (7.19b) gives in the Euclidean 
metric 

1)~(p) = (m2 + p2) -1 cosh-2[l(m2 + p2) ~/2] (7.32) 

and therefore the causal Green function of a scalar massive particle 

D~(x) = ( 2 " r r )  - 4  f drip e-ipXD~(p) (7.33) 

is finite at the point x=0 .  Indeed, the function D~(0) in the Euclidean 
metric is given by 

D~(0) = cr2(2~r) -4 du u(m2+ u) -1 cosh-2[l(m2+ u) 1/2] 

1 i [ ' - ~  v(p) m ~+p Ipr(-1-~p) 
- -  d p "  - -  

16~ -2 2i J_r+,~ sm ~rp F(1 +p)  F(1-�89 

m 2 1 ~-v-,~ v(p) (ral) ~' 
- j dp - F( l+p)  p-~(2+p) -1 472 2i _r+~ sin 7rp 

1 rn z 
- 8  ~r 2[ln2"m-21-2+v'(O)+lnml-gr(1)-�89 y<2 '  ~ ( 1 ) = - C  

where C = 0.577 is the Euler constant. 
Similarly to formula (7.29), the following Mellin representation holds 

for the function (7.32): 

1 f-~,-i~ v(p) dp l~ ( rn2 + pZ- ie ) p/2.~, 
/)~(P) = ~  _r+~ sin ~ 'p .F( l+p)  

2 < 3 , < 1  

(7.34) 

Here v(p) is given by formula (7.28). 
As in the case of the Coulomb law, in the given scheme the Yukawa 

potential between two scalar particles acquires the form 

Uv(r) = g2(27r)-3 f d3p (m2+p2) - '  e-ipr cosh-2[ l( m2 + p2) 1/2] 

g2 mf-r-i~o v(p)l o ( 2 ; )  (p-~)/2 
-- dp - -  

2~r2~f-~r 2i r+,-~ sin ~rp. F(1 + p) 

xcos~Tr(p-1)F(~p)K(p+l)/2(mr), 4 < 7 < 3  (7.35) 

where K~(x) is the MacDonald function of vth order. This representation 
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is valid for the case r = 0 and has only a single pole at the point p = 0. The 
calculation of the residue at this point gives 

Uv(r)=(g2/4~rr) e -mr for r # 0  (7.36) 

In order to calculate the value Uv(r) for r ~ 0, we use another representation 
obtained directly from the first equality in (7.35): 

lim Uv(r) = Uv(0) + r z U~,+ O(r  4) 
r~0 

where 

Uv(0) =2~.2 dx x2(trlZ W x2) -1 cosh-2[l(m2 + x2) 1/2] 

_rag  2 1 f_~,-,oo v(p) (ml) p rOr(-�89189 
4r 2 2i a-r+ioo dPsin ~rp F ( l + p )  F(1-�89 

2 

g2 mg 2 7 m ~ ( m l ) ~ ( 3 ) + O ( m 2 1 2 )  (7.37a) 
2 ~r2 l 4 ~r 4 ~r 

u ~ ( o )  . . . .  g2 1 dxx4(m2q_x2)_ 1 cosh_2[l(m2+x2)a/2] 
2r 2 3 ] 

g2 1 1 m3 1 I -:r176176 dp v(p)(ml)~ 
277" 2 3I 2 2i J_v+ioo sin 7rp.F(1 +p )  r(1-�89 

g2 gam2 gam3 

144/3 8~al 24~r 
- -  ~- O (  ml )  (7.37b) 

Here if(3) = E.~_-I (1/n 3) = 1.20205690, 
Combining the formulas (7.36), (7.37a), and (7.37b), we have 

f -  gZ/2~r21 - (rn/47r)g 2 - 7  mg2(ml/ Ir 4)~(3) + O(m313) 
Uv(r)= / -r2(g2/14413+N) for r ~ 0  

[(g2/4~rr) e -mr f0i" r # 0 
(7.38) 

where 

N = (g2/8rr2)(m2/1) + (g2/24~r)m3 + O(ml) 

Thus, we ge~ that the Yukawa law is valid up to the point r = 0, and therefore, 
the corresponding theory is local almost everywhere. 
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Now we discuss equation (7.19b). It has three solutions: 

(1) p2 = _m 2, at which cosh 0 = 1 

(2) p2#-m2,  cos[l(-p2-m2)~/2]=O, p 2 < - m 2  (7.39) 

(3) Trivial solution q~R(p)~O, for --m2<p 2 

The first corresponds to the free scalar particle with mass m and second to 
the family of particles with masses 

Mn ={m2+[(~/l)(�89 1/2, n =0,  1,2 . . . .  (7.40) 

In the second case the initial particle becomes a virtual one, but at the same 
time a family of particles is generated due to the quantized space-time 
properties at short distances. On the other hand, these new generated 
particles may be understood as excited states of the initial particle with 
discrete energy levels 

En =(E2 + E'2) ~/2 (7.41) 

in quantized space-time, where 

Eo=(m2+p2) 1/2, E~=(Tr/I)(�89 

It is not difficult to construct finite quantum electrodynamics (Namsrai, 
1985) with the propagator (7.21) in accordance with the prescription 
developed by Efimov (1977, 1985) and Namsrai (1986b). Here we obtain 
only an upper bound on the value of the fundamental length from experi- 
mental data on high-energy scattering processes. Since electromagnetic 
processes of the type e e ->e e , e+e-->e+e -, and e+e--->/z+/~ - are 
described even by a low order of the perturbation theory up to, at high 
energies, the recently attainable one (see Figure lb), the ratio of cross 
sections calculated by the usual local and nonlocal theories discussed above 
is given by 

~,on,oc/o%c- [V(-sl2)] 2 = [1 -�89 2~ 1 - 2 s l  2 

where v(2) is given by the expression (7.28), and 

s = (pm + p 2 )  2 = ( 2 E )  2 = W 2 

W = 2E is total energy in the center-of-mass frame of reference. 
An estimation based on this formula is very simple, and using present 

experimental data (see, for example, Bartel et al., 1980; Berger et al., 1980) 
we have 

l~-  < 10 -16 cm (7.42) 
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Of course, there exist other bounds on the fundamental  length [see, for 
example,  Bracc ie t  al. (1983) and previous sections]. 

Now we determine the energy scales at which different forces are unified. 
This is also possible in our model. For this purpose,  first we construct the 
weak potential  between two particles. In accordance with the traditional 
method, we do this in the following manner:  

l)~w(p) = (g~-p~p~/m2w)(m2w+p2-ie) -~ ~ g ~ / m  2 
mw~CX3 

or in the language of Feynman diagrams, the intermediate vector weak 
interaction transforms into the four-fermion weak interaction, i.e., two 
vertices of  interacting fermions linked with the propagator  of  the intermedi- 
ate boson at the limit mw ~ ~ become one vertex with four fermion lines 
entering into it. Upon  this, the weak potential acquires the form 

Ioc I Uw(r) = g2w(21r)-3 dap e-iPr(m2 +p2)-l(8~j -p~pJm2w) 

(GF/x/2)(2zr)-3t$ij f d3p e-ipr 

where GF/X/2 = 2 2 g w/m w. It is a local case. In our model it takes the form 

Uw(r) = (Gv/x/2)(2~r) -3 f dap e-iPr c o s h - 2 ( l ~ p  2) 

io = (Gv/~)(1/2~r212r) dyy s in(ry/ l )  cosh -2 y 

= -(GF/v/-2)(1/2~rZlZr) d(~rz/2 sinh ~Irz)/dz 

= - ( c , ~ / ~ ) ( 1 / 4 ~ - 1 2 r )  

x [1/sinh ~ z -  �89 cosh(�89 2 ~ z ]  

where z = r/l. It is easy to verify that this potential is finite at the point 
r = 0. For r + 0, we have 

Uw(r)  = (GF/~/2)(1/2413) - (Gv/v/2)(~r2/2'l')(31/180)r 2 (7.43) 

We now assume that the electrostatic energy Uc(0) and the weak-static 
energy Uw (0) of  the electron coincide with the absolute value at the energy 
scale given by Eew = h/lewc. Here we call E ~  the electroweak energy scale 
at which electromagnetic and weak interactions are unified. Thus, from 
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(7.31) and (7.43), we have 

( e2/27r21ew) = ( GF/.v~)( l/2413ew) 

o r  
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Eew = ( a /  G F ) l / 2 ( 4 8 ~ /  ~r) 1/2 = 118.1 GeV 

where a = e~/41r and E~w = h/lewc. We see that the obtained energy scale 
is closer to the unified scale of electroweak interactions due to S. Weinberg, 
A. Salam, and S. Glashow, i.e., it coincides roughly with the mass of  the 
W ~: and Z ~ bosons. 

Analogously, comparing the values of  the weak-static energy Uw(O) 
and strong Yukawa energy Uu at the same energy scale E,w = h / l ,  wc 
(we call this the nuclear-weak energy scale), we have from (7.38) and (7.43): 

o r  

(g2/2~21.w) = ( GF/,,/2)(1/2413w) 

where 

E,w = ( f  / Gv)1/2( 48v/-2/ ~.),/2 = 5353 GeV 

f =  g2/47r ~ 15, E,w = h / l ,  wc 

It is interesting to notice that the hypothesis of quantized space-time 
may indicate the energy scale of  a grand unified theory linking weak, strong, 
and electromagnetic interactions at very high energy. It is no exception that 
this unification takes place at the energy scale E,w=5353 GeV (or, 
equivalently, at the distances 1 -  4 x 10 -18 cm), which is much lower than 
the energy scale 1015 GeV discussed in the grand unified theory. 
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